留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完美涡旋光束在大气湍流中的斜程传输特性

汪航 汪玉琴 张蓉竹

汪航, 汪玉琴, 张蓉竹. 完美涡旋光束在大气湍流中的斜程传输特性[J]. 强激光与粒子束, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111
引用本文: 汪航, 汪玉琴, 张蓉竹. 完美涡旋光束在大气湍流中的斜程传输特性[J]. 强激光与粒子束, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111
Wang Hang, Wang Yuqin, Zhang Rongzhu. Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence[J]. High Power Laser and Particle Beams, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111
Citation: Wang Hang, Wang Yuqin, Zhang Rongzhu. Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence[J]. High Power Laser and Particle Beams, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111

完美涡旋光束在大气湍流中的斜程传输特性

doi: 10.11884/HPLPB202335.230111
基金项目: 四川省科技厅科学基金项目(2021YFH0119),四川省科技重大专项(2019ZDZX0038)
详细信息
    作者简介:

    汪 航,1520178764@qq.com

    通讯作者:

    张蓉竹,zhang_rz@scu.edu.cn

  • 中图分类号: O436.1;P427.1

Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence

  • 摘要: 完美涡旋(POV)光束具有光束半径与拓扑荷数无关的特点,与其他涡旋光束相比具有更加稳定的空间强度分布特性。利用多相位屏法和傅里叶变换法,分析了POV光束在大气湍流中的斜程传输特性。采用光束漂移和孔径平均闪烁指数作为大气湍流影响光束质量的评价参数,对比了POV光束与高斯涡旋光束在相同传输条件下的光束质量。结果表明:相比于高斯涡旋光束,POV光束的光束稳定性更好。当拓扑荷数增大或天顶角减小时,POV光束抵抗大气湍流的能力增强。在不改变POV光束拓扑荷数的前提下增大其光束半径,也能提高POV光束对大气湍流的抵抗能力。
  • 图  1  斜程传输链路示意图

    Figure  1.  Diagram of slant path transmission link

    图  2  大气湍流影响下不同传输距离POV光束的二维光强和相位分布

    Figure  2.  Two-dimensional intensity and phase distribution of POV beams with different transmission distances under atmospheric turbulence

    图  3  不同传输距离POV光束的一维光强分布

    Figure  3.  One-dimensional intensity distribution of POV beams at different transmission distances

    图  4  不同拓扑荷数光束漂移量的变化规律以及完美涡旋与高斯涡旋光束漂移量对比

    Figure  4.  Variation of beam drift of different topological charges and the comparison of beam drift of perfect vortex and Gaussian vortex

    图  5  不同天顶角,POV光束漂移量随传输距离的变化

    Figure  5.  POV beam drift varies with transmission distance for different zenith angles

    图  6  光束漂移量随POV光束环半径的变化曲线

    Figure  6.  Curve of beam drift with the radius of POV beam ring

    图  7  不同拓扑荷数光束孔径平均闪烁指数的变化规律以及POV与高斯涡旋闪烁指数对比

    Figure  7.  Variation of the mean scintillation index of the aperture of a beam with different topological charges and the comparison between POV and Gaussian vortex scintillation index

    图  8  不同天顶角POV光束孔径平均闪烁指数随传输距离的变化

    Figure  8.  Variation of mean scintillation index of POV beam aperture with different zenith angles and transmission distance

    图  9  孔径平均闪烁指数随POV光束环半径的变化曲线

    Figure  9.  Mean scintillation index of aperture varies with the radius of POV beam

  • [1] 王伟, 李晓记, 任亚萍, 等. 自由空间轨道角动量无线光通信研究进展[J]. 光通信技术, 2019, 43(4):12-17 doi: 10.13921/j.cnki.issn1002-5561.2019.04.003

    Wang Wei, Li Xiaoji, Ren Yaping, et al. Research progress on free space orbital angular momentum wireless optical communication[J]. Optical Communication Technology, 2019, 43(4): 12-17 doi: 10.13921/j.cnki.issn1002-5561.2019.04.003
    [2] 谢友朋, 张珊, 雷霆, 等. 奇点光束复用光通信(特邀)[J]. 光通信研究, 2018(6):11-20 doi: 10.13756/j.gtxyj.2018.06.002

    Xie Youpeng, Zhang Shan, Lei Ting, et al. Singular optical beams multiplexing optical communication[J]. Study on Optical Communications, 2018(6): 11-20 doi: 10.13756/j.gtxyj.2018.06.002
    [3] Lukin V P, Konyaev P A, Sennikov V A. Beam spreading of vortex beams propagating in turbulent atmosphere[J]. Applied Optics, 2012, 51(10): C84-C87. doi: 10.1364/AO.51.000C84
    [4] Zhu Kaicheng, Zhou Guoquan, Li Xuguang, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 2008, 16(26): 21315-21320. doi: 10.1364/OE.16.021315
    [5] Yüceer M, Eyyuboglu H T, Lukin I P. Scintillations of partially coherent Laguerre Gaussian beams[J]. Applied Physics B, 2010, 101(4): 901-908. doi: 10.1007/s00340-010-4291-4
    [6] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 2008, 25(1): 225-230. doi: 10.1364/JOSAA.25.000225
    [7] Chen B S, Pu J X. Propagation of Gauss-Bessel beams in turbulent atmosphere[J]. Chinese Physics B, 2009, 18(3): 1033-1039. doi: 10.1088/1674-1056/18/3/032
    [8] Kirilenko M S, Porfirev A P, Khonina S N. Comparison of propagation of vortex and non-vortex laser beams in a random medium[C]//Proceedings of the SPIE 10342, Optical Technologies for Telecommunications 2016. 2016: 103420B.
    [9] Yue Yang, Yan Yan, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2): 535-543. doi: 10.1109/JPHOT.2012.2192474
    [10] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536. doi: 10.1364/OL.38.000534
    [11] Wang Le, Jiang Xincheng, Zou Li, et al. Two-dimensional multiplexing scheme both with ring radius and topological charge of perfect optical vortex beam[J]. Journal of Modern Optics, 2019, 66(1): 87-92. doi: 10.1080/09500340.2018.1512669
    [12] Yang Chunyong, Lan Yue, Jiang Xiaoyu, et al. Beam-holding property analysis of the perfect optical vortex beam transmitting in atmospheric turbulence[J]. Optics Communications, 2020, 472: 125879. doi: 10.1016/j.optcom.2020.125879
    [13] Series P. Propagation data and prediction methods required for the design of Earth-space telecommunication systems[J]. Recommendation ITU-R P. 618-12, 2015.
    [14] Zhu Fuquan, Huang Sujuan, Shao Wei, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)[J]. Optics Communications, 2017, 396: 50-57. doi: 10.1016/j.optcom.2017.03.023
    [15] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布[J]. 物理学报, 2009, 58(9):6633-6639 doi: 10.7498/aps.58.6633

    Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path[J]. Acta Physica Sinica, 2009, 58(9): 6633-6639 doi: 10.7498/aps.58.6633
    [16] Fleck Jr J A, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 1976, 10(2): 129-160. doi: 10.1007/BF00896333
    [17] Ke Xizheng, Lei Sichen. Spatial light coupled into a single-mode fiber by a Maksutov–Cassegrain antenna through atmospheric turbulence[J]. Applied Optics, 2016, 55(15): 3897-3902. doi: 10.1364/AO.55.003897
    [18] Siegman A E. New developments in laser resonators[C]. Proceedings of the SPIE 1224, Optical Resonators. 1990: 2-14.
    [19] 陈鸣, 高太长, 刘磊, 等. 非Kolmogorov湍流相位屏仿真及对光束传输模拟的影响[J]. 强激光与粒子束, 2017, 29:091008 doi: 10.11884/HPLPB201729.170052

    Chen Ming, Gao Taichang, Liu Lei, et al. Influence of non-Kolmogorov turbulence phase screen based on equivalent structure constant on beam quality in transmission[J]. High Power Laser and Particle Beams, 2017, 29: 091008 doi: 10.11884/HPLPB201729.170052
  • 加载中
图(9)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  188
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-07-28
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回