留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

触发区域宽度对砷化镓光导开关输出特性影响

陈红 韦金红 曾凡正 贾成林 付泽斌 李嵩 钱宝良

陈红, 韦金红, 曾凡正, 等. 触发区域宽度对砷化镓光导开关输出特性影响[J]. 强激光与粒子束, 2023, 35: 105004. doi: 10.11884/HPLPB202335.230123
引用本文: 陈红, 韦金红, 曾凡正, 等. 触发区域宽度对砷化镓光导开关输出特性影响[J]. 强激光与粒子束, 2023, 35: 105004. doi: 10.11884/HPLPB202335.230123
Chen Hong, Wei Jinhong, Zeng Fanzheng, et al. Influence of the width of triggering region on output characteristics of GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2023, 35: 105004. doi: 10.11884/HPLPB202335.230123
Citation: Chen Hong, Wei Jinhong, Zeng Fanzheng, et al. Influence of the width of triggering region on output characteristics of GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 2023, 35: 105004. doi: 10.11884/HPLPB202335.230123

触发区域宽度对砷化镓光导开关输出特性影响

doi: 10.11884/HPLPB202335.230123
基金项目: 脉冲功率激光技术国家重点实验室开放基金项目(SKL 2021KF05)
详细信息
    作者简介:

    陈 红,1281411534@qq.com

    通讯作者:

    李 嵩,song_li206@163.com

  • 中图分类号: TN36

Influence of the width of triggering region on output characteristics of GaAs photoconductive semiconductor switch

  • 摘要: 基于TCAD数值仿真软件,建立了异面结构砷化镓光导开关(GaAs PCSS)的二维数值计算模型,研究了触发区域宽度对GaAs PCSS输出特性影响。首先分析了PCSS的瞬态导通特性,结果表明,急剧增加的载流子浓度与快速演化的空间电离畴使PCSS工作在超快速导通模式。基于此,研究了触发区域宽度对PCSS输出特性影响,结果表明,宽度变大会促进载流子密度急剧倍增和雪崩电离畴的快速演化,缩短PCSS的延迟时间和导通时间。研究分析了不同触发位置对延迟时间与导通时间影响,结果表明,阴极触发的延迟时间明显低于阳极触发,而导通时间受触发位置的影响不显著。
  • 图  1  GaAs PCSS模拟电路

    Figure  1.  GaAs PCSS analog circuit

    图  2  W=3 μm时PCSS延迟阶段和导通阶段不同时刻的电场分布

    Figure  2.  Electric field distribution of PCSS in the delay stage and the switching stage when W=3 μm

    图  3  W=3 μm时PCSS电流响应随时间变化

    Figure  3.  PCSS current response with time when W=3 μm

    图  4  不同W下PCSS的延迟时间与导通时间

    Figure  4.  Delay time and switching time of PCSS at different W

    图  5  t=1.3 ns时,不同W下PCSS的电场分布

    Figure  5.  Electric field distribution of PCSS at different W when t=1.3 ns

    图  6  t=1.3 ns时不同W下PCSS的载流子浓度分布

    Figure  6.  Carrier concentration distribution of PCSS at different W when t=1.3 ns

    图  7  不同W下PCSS在阳极和阴极触发的延迟时间和导通时间

    Figure  7.  Delay time and switching time of PCSS triggering at anode and cathode at different W

    图  8  W=4 μm且t=1.5 ns时,阳极或阴极触发时PCSS的电场分布

    Figure  8.  When W=4 μm and t=1.5 ns, the electric field distribution of PCSS when anode or cathode is triggered

    表  1  t=1.3 ns时不同W下PCSS表面平均载流子浓度和畴内最大峰值场强

    Table  1.   At t=1.3 ns, the average carrier concentration on the surface of PCSS and the maximum peak field intensity in the domain at different W

    width of the trigger
    region/μm
    average carrier concentration/(1015 cm−3)maximum peak electric field within
    the domain/(kV/cm)
    20.7372
    31.00149
    41.85250
    52.31375
    68.77381
    下载: 导出CSV
  • [1] Wang Langning, Liu Jingliang. Solid-state nanosecond pulse generator using photoconductive semiconductor switch and helical pulse forming line[J]. IEEE Transactions on Plasma Science, 2017, 45(12): 3240-3245. doi: 10.1109/TPS.2017.2764502
    [2] Li Song, Gao Jingming, Yang Hanwu, et al. Investigation on dynamic properties of amorphous magnetic core stimulated by different driving voltages[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4536-4540. doi: 10.1109/TPS.2019.2914265
    [3] Tian Liqiang, Shi Wei. Analysis of operation mechanism of semi-insulating GaAs photoconductive semiconductor switches[J]. Journal of Applied Physics, 2008, 103: 124512. doi: 10.1063/1.2940728
    [4] Xu Ming, Liu Rujun, Shang Xiaoyan, et al. High-gain operation of GaAs photoconductive semiconductor switch at 24.3nJ excitation[J]. IEEE Electron Device Letters, 2016, 37(6): 751-753. doi: 10.1109/LED.2016.2556858
    [5] Shi Wei, Wang Shaoqiang, Ma Cheng, et al. Generation of an ultra-short electrical pulse with width shorter than the excitation laser[J]. Scientific Reports, 2016, 6: 27577. doi: 10.1038/srep27577
    [6] Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507
    [7] Sun Yue, Hu Long, Dang Xin, et al. Investigation on the mechanism of triggering efficiency of high-power avalanche GaAs photoconductive semiconductor switch[J]. IEEE Electron Device Letters, 2021, 42(11): 1646-1649. doi: 10.1109/LED.2021.3114600
    [8] 袁建强, 刘宏伟, 刘金锋, 等. 不同形状的光斑触发砷化镓光导开关[J]. 强激光与粒子束, 2010, 22(3):557-560 doi: 10.3788/HPLPB20102203.0557

    Yuan Jianqiang, Liu Hongwei, Liu Jinfeng, et al. GaAs photoconductive semiconductor switch triggered by laser spots with different profiles[J]. High Power Laser and Particle Beams, 2010, 22(3): 557-560 doi: 10.3788/HPLPB20102203.0557
    [9] Shi Wei, Jiang Huan, Li Mengxia, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode[J]. Applied Physics Letters, 2014, 104: 042108. doi: 10.1063/1.4863738
    [10] Zhang Tian, Liu Kefu, Gao Shijia, et al. Characteristics of GaAs PCSS triggered by 1 μJ laser diode[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1991-1996. doi: 10.1109/TDEI.2015.004950
    [11] Selberherr S. Analysis and simulation of semiconductor devices[M]. Wien: Springer-Verlag, 1984.
    [12] Hu Long, Xu Ming, Li Xin, et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 4963-4969. doi: 10.1109/TED.2020.3025984
    [13] Vainshtein S N, Yuferev V S, Kostamovaara J T. Ultrahigh field multiple Gunn domains as the physical reason for superfast (picosecond range) switching of a bipolar GaAs transistor[J]. Journal of Applied Physics, 2005, 97: 024502. doi: 10.1063/1.1839638
    [14] 刘英洲, 韦金红, 王郎宁, 等. 同面电极砷化镓光导开关的导通特性[J]. 半导体技术, 2023, 48(1):10-17

    Liu Yingzhou, Wei Jinhong, Wang Langning, et al. Switching transient characteristics of GaAs photoconductive semiconductor switch with co-planar electrodes[J]. Semiconductor Technology, 2023, 48(1): 10-17
    [15] 陈星弼, 陈勇, 刘继芝, 等. 微电子器件[M]. 4版. 北京: 电子工业出版社, 2018

    Chen Xingbi, Chen Yong, Liu Jizhi, et al. Microelectronic devices[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2018
    [16] Wei Jinhong, Li Song, Wang Langning, et al. Properties of switching transient in the semi-insulating GaAs photoconductive semiconductor switch with opposed contacts[J]. IEEE Transactions on Plasma Science, 2022, 50(10): 3635-3643. doi: 10.1109/TPS.2022.3207061
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  99
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-08-30
  • 录用日期:  2023-08-30
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回