留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小角度V形腔光谱合束的半导体激光器和频

赵宇飞 佟存柱 魏志鹏

赵宇飞, 佟存柱, 魏志鹏. 基于小角度V形腔光谱合束的半导体激光器和频[J]. 强激光与粒子束, 2023, 35: 091008. doi: 10.11884/HPLPB202335.230127
引用本文: 赵宇飞, 佟存柱, 魏志鹏. 基于小角度V形腔光谱合束的半导体激光器和频[J]. 强激光与粒子束, 2023, 35: 091008. doi: 10.11884/HPLPB202335.230127
Zhao Yufei, Tong Cunzhu, Wei Zhipeng. Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35: 091008. doi: 10.11884/HPLPB202335.230127
Citation: Zhao Yufei, Tong Cunzhu, Wei Zhipeng. Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining[J]. High Power Laser and Particle Beams, 2023, 35: 091008. doi: 10.11884/HPLPB202335.230127

基于小角度V形腔光谱合束的半导体激光器和频

doi: 10.11884/HPLPB202335.230127
基金项目: 国家自然科学基金项目(62025506)
详细信息
    作者简介:

    赵宇飞,1472529633@qq.com

    通讯作者:

    佟存柱, tongcz@ciomp.ac.cn

    魏志鹏, weizp@cust.edu.cn

  • 中图分类号: TN24

Sum frequency generation of semiconductor laser based on V-shaped spectral beam combining

  • 摘要: 通过小角度V形腔外腔光谱合束将两个808 nm半导体激光器合束,提高半导体激光器的输出功率及光束质量。两个合束单元分别工作在795.8 nm和800.5 nm,将所获光束通过非线性光学方法进行频率转换。外腔光谱合束实现输出功率为6.5 W快慢轴光束质量M2=2.2×18.5的光束输出,所获光束慢轴M2因子相较于自由运转单管激光器提高了30%,外腔光谱合束效率为83%。基于所获光源,实现了半导体激光器小角度V形腔外腔光谱合束和频,获得输出功率为18.3 mW波长为401.0 nm的蓝光输出,和频效率为0.28%。
  • 图  1  半导体激光器小角度V形腔外腔光谱合束和频实验装置

    Figure  1.  Experimental setup diagram of sum frequency generation of semiconductor laser based on V-shaped spectral beam combining

    FAC—fast-axis collimating lens, SAC—slow-axis collimating lens, BBO—β-BaB2O4

    图  2  实验结果

    Figure  2.  Experimental result

    图  3  和频光束功率特性和光谱特性

    Figure  3.  Power of the blue output beam generated by SFG and characteristics spectral of the sum frequency generation

    表  1  所采用半导体激光器的参数

    Table  1.   Structure parameters of the diode lasers used

    central wavelength/nm cavity length/mm emitter width/μm Θfast 95% power content/(°) Θslow 95% power content/(°) front facet reflectivity rear facet reflectivity/% degree of TE polarization/%
    808 3 120 75 15 2.5% 95 >95
    下载: 导出CSV
  • [1] Witte U, Schneider F, Traub M, et al. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters[J]. Optics Express, 2016, 24(20): 22917-22929. doi: 10.1364/OE.24.022917
    [2] Pietrzak A, Zorn M, Huelsewede R, et al. Development of highly efficient laser diodes emitting around 1060nm for medical and industrial applications[C]//Proceedings of SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000K.
    [3] Shimada N, Yukawa M, Shibata K, et al. 640-nm laser diode for small laser display[C]//Proceedings of SPIE 7198, High-Power Diode Laser Technology and Applications VII. 2009: 719806.
    [4] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119. doi: 10.1103/PhysRevLett.7.118
    [5] Edmonds H, Smith A. Second-harmonic generation with the GaAs laser[J]. IEEE Journal of Quantum Electronics, 1970, 6(6): 356-360. doi: 10.1109/JQE.1970.1076460
    [6] Yamamoto K, Yamamoto H, Taniuchi T. Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide[J]. Applied Physics Letters, 1991, 58(12): 1227-1229. doi: 10.1063/1.104370
    [7] Müller A, Jensen O B, Hasler K H, et al. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers[J]. Optics Letters, 2012, 37(18): 3753-3755. doi: 10.1364/OL.37.003753
    [8] Hansen A K, Jensen O B, Andersen P E, et al. 5.5 W of diffraction-limited green light generated by SFG of tapered diode lasers in a cascade of nonlinear crystals[C]//Frontiers in Optics 2015. 2015: FTu2F. 3.
    [9] Zhu Zhanda, Jiang Menghua, Yu Haoyang, et al. Generation of blue light by sum-frequency generation of a spectrally combined broad-area diode laser array[J]. Optics Letters, 2016, 41(20): 4712-4714. doi: 10.1364/OL.41.004712
    [10] 周朴, 粟荣涛, 马阎星, 等. 激光相干合成的研究进展: 2011—2020[J]. 中国激光, 2021, 48:0401003 doi: 10.3788/CJL202148.0401003

    Zhou Pu, Suo Rongtao, Ma Yanxing, et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 2021, 48: 0401003 doi: 10.3788/CJL202148.0401003
    [11] 王立军, 彭航宇, 张俊. 大功率半导体激光合束进展[J]. 中国光学, 2015, 8(4):517-534 doi: 10.3788/co.20150804.0517

    Wang Liju, Peng Hangyu, Zhang Jun. Advance on high power diode laser coupling[J]. Chinese Optics, 2015, 8(4): 517-534 doi: 10.3788/co.20150804.0517
    [12] Zhu Hongbo, Lin Xingchen, Zhang Yawei, et al. kW-class fiber-coupled diode laser source based on dense spectral multiplexing of an ultra-narrow channel spacing[J]. Optics Express, 2018, 26(19): 24723-24733. doi: 10.1364/OE.26.024723
    [13] Zhu Hongbo, Duan Xiaoming, Fan Shengli, et al. Scalable structure of coherent polarization beam combining based on tapered diode laser amplifiers[J]. Optics & Laser Technology, 2020, 132: 106470.
    [14] Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901. doi: 10.1364/OE.27.027891
    [15] Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407. doi: 10.1364/OL.25.000405
    [16] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(5): 621-623. doi: 10.1364/OL.36.000621
    [17] 孟慧成, 谭昊, 李建民, 等. 半导体激光器光栅外腔光谱合束技术研究进展[J]. 激光与光电子学进展, 2015, 52:020003

    Meng Huicheng, Tan Hao, Li Jianmin. Development of spectral beam combining of diode laser by grating and external cavity[J]. Laser & Optoelectronics Progress, 2015, 52: 020003
    [18] Zheng Ye, Yang Yifeng, Wang Jianhua, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063
    [19] 禹伶洁. 激光合束专利技术现状及进展[J]. 中国新技术新产品, 2020(5):139-140 doi: 10.3969/j.issn.1673-9957.2020.05.064

    Yu Lingjie. Development of patent technology for laser beam combination[J]. New Technologies & New Products of China, 2020(5): 139-140 doi: 10.3969/j.issn.1673-9957.2020.05.064
    [20] Jung A, Song S, Kim S, et al. Numerical analyses of a spectral beam combining multiple Yb-doped fiber lasers for optimal beam quality and combining efficiency[J]. Optics Express, 2022, 30(8): 13305-13319. doi: 10.1364/OE.455728
    [21] 张俊, 彭航宇, 曹军胜, 等. 970nm百瓦级半导体激光外腔反馈光谱合束光源[J]. 光学学报, 2013, 33:1114001 doi: 10.3788/AOS201333.1114001

    Zhang Jun, Peng Hangyu, Cao Junsheng, et al. 970 nm hundred-watt level diode laser source by spectral beam combining with external cavity feedback[J]. Acta Optica Sinica, 2013, 33: 1114001 doi: 10.3788/AOS201333.1114001
    [22] 王立军, 彭航宇, 张俊, 等. 高功率高亮度半导体激光器合束进展[J]. 红外与激光工程, 2017, 46:0401001 doi: 10.3788/IRLA201746.0401001

    Wang Lijun, Peng Hangyu, Zhang Jun, et al. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 2017, 46: 0401001 doi: 10.3788/IRLA201746.0401001
    [23] Jechow A, Skoczowsky D, Lichtner M, et al. High-brightness emission from stripe-array broad area diode lasers operated in off-axis external cavities[C]//Proceedings of SPIE 7583, High-Power Diode Laser Technology and Applications VIII. 2010: 758312.
    [24] Vijayakumar D, Jensen O B, Thestrup B. 980 nm high brightness external cavity broad area diode laser bar[J]. Optics Express, 2009, 17(7): 5684-5690. doi: 10.1364/OE.17.005684
    [25] Sun Fangyuan, Shu Shili, Zhao Yufei, et al. High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback[J]. Optics Express, 2018, 26(17): 21813-21818. doi: 10.1364/OE.26.021813
    [26] Zhao Yufei, Sun Fangyuan, Tong Cunzhu, et al. Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity[J]. Optics Express, 2018, 26(11): 14058-14065. doi: 10.1364/OE.26.014058
    [27] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355. doi: 10.1109/JQE.1980.1070479
    [28] 孟慧成, 武德勇, 谭昊, 等. 窄光谱高亮度半导体激光器光栅-外腔光谱合束实验研究[J]. 中国激光, 2015, 42:0302003 doi: 10.3788/CJL201542.0302003

    Meng Huicheng, Wu Deyong, Tan Hao, et al. Experimental study on high brightness and narrow band of diode laser by spectral beam combining of grating-external cavity[J]. Chinese Journal of Lasers, 2015, 42: 0302003 doi: 10.3788/CJL201542.0302003
    [29] 刘良清, 袁孝, 吕超. 双轴晶体和频时晶体长度与允许参量分析[J]. 激光技术, 2007, 31(3):232-234,245 doi: 10.3969/j.issn.1001-3806.2007.03.014

    Liu Liangqing, Yuan Xiao, Lü Chao. The crystal-length and acceptance parameters of SFG with biaxial crystals[J]. Laser Technology, 2007, 31(3): 232-234,245 doi: 10.3969/j.issn.1001-3806.2007.03.014
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  178
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-08-18
  • 录用日期:  2023-08-18
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回