留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新型钙钛矿材料的光场调控太赫兹超表面仿真研究

李依凡 杨睿 解佩翰 杨贺 娄存广 刘秀玲 姚建铨

李依凡, 杨睿, 解佩翰, 等. 基于新型钙钛矿材料的光场调控太赫兹超表面仿真研究[J]. 强激光与粒子束, 2023, 35: 129001. doi: 10.11884/HPLPB202335.230128
引用本文: 李依凡, 杨睿, 解佩翰, 等. 基于新型钙钛矿材料的光场调控太赫兹超表面仿真研究[J]. 强激光与粒子束, 2023, 35: 129001. doi: 10.11884/HPLPB202335.230128
Li Yifan, Yang Rui, Xie Peihan, et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials[J]. High Power Laser and Particle Beams, 2023, 35: 129001. doi: 10.11884/HPLPB202335.230128
Citation: Li Yifan, Yang Rui, Xie Peihan, et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials[J]. High Power Laser and Particle Beams, 2023, 35: 129001. doi: 10.11884/HPLPB202335.230128

基于新型钙钛矿材料的光场调控太赫兹超表面仿真研究

doi: 10.11884/HPLPB202335.230128
基金项目: 中国科协青年人才托举工程项目(2022QNRC001);国家重点研发计划项目(2022YFA1203502);国家自然科学基金项目(2022YFA1203502); 河北大学人才引进项目 (521100221083);河北省自然科学基金项目(F2023201041)
详细信息
    作者简介:

    李依凡,liyifan_an@163.com

    通讯作者:

    刘秀玲,liuxiuling121@hotmail.com

  • 中图分类号: TB333

Simulation of terahertz metasurface controlled by light field based on novel perovskite materials

  • 摘要: 为实现高效太赫兹调控,迫切需要一种高效且成本低的材料。新型钙钛矿材料由于其优异的光电特性,加上钙钛矿制备工艺简单、可大批量生产等优点,非常适合作为太赫兹超材料的活性材料,通过外部激励改变活性材料的属性,可灵活调控太赫兹波。因此,选择新型钙钛矿材料外加光场调控太赫兹,分析在光场作用前(绝缘态)和在光场作用后(金属态)两种状态对单元结构太赫兹宽波段下幅值和相位的影响。设计出光场灵活调控的钙钛矿基1 bit太赫兹编码超表面结构,该结构由有机无机杂化钙钛CH3NH3PbI3(MAPbI3)、聚酰亚胺和铝构成。通过CST仿真结果显示,该超表面结构在光场的调控下能够实现宽谱(0.1、1、2、6 THz)太赫兹波的180°相位差变化,经过超表面编码结构的设计,同一编码序列实现远场波束的变换。研究结果表明,基于光场操控钙钛矿材料的编码超表面为实现灵活的太赫兹波调控提供了新的思路,在太赫兹通信、安检、生物医学成像等方面具有巨大的应用潜力。
  • 图  1  单元“0”与“1”的结构示意图

    Figure  1.  Structure diagram of unit “0” and “1”

    图  2  0.1 THz反射振幅与反射相位

    Figure  2.  0.1 THz reflection amplitude and reflection phase

    图  5  6 THz反射振幅与反射相位

    Figure  5.  6 THz reflection amplitude and reflection phase

    图  3  1 THz反射振幅与反射相位

    Figure  3.  1 THz reflection amplitude and reflection phase

    图  4  2 THz反射振幅与反射相位

    Figure  4.  2 THz reflection amplitude and reflection phase

    图  6  0.1 THz的远场示意图与反射率比色图对比

    Figure  6.  Far-field diagrams of 0.1 THz compared with reflectance colorimetric diagram

    图  7  1 THz的远场示意图与反射率比色图对比

    Figure  7.  Far-field diagrams of 1 THz compared with reflectance colorimetric diagram

    图  8  2 THz的远场示意图与反射率比色图对比

    Figure  8.  Far-field diagrams of 2 THz compared with reflectance colorimetric diagram

    图  9  6 THz的远场示意图与反射率比色图对比

    Figure  9.  Far-field diagrams of 6 THz compared with reflectance colorimetric diagram

    表  1  “0”结构参数

    Table  1.   Structure parameters of unit ‘0’

    frequency/THz medium thickness/μm aluminum thickness/μm perovskite thickness/μm structure length/μm diagonal length of perovskite/μm
    0.1 160 1.6 1.6 880 860
    1 20 0.2 0.2 110 95
    2 20 0.2 0.2 110 36
    6 4 0.04 0.04 22 17
    下载: 导出CSV

    表  2  “1”结构参数

    Table  2.   Structure parameter of unit ‘1’

    frequency/
    THz
    medium thickness/μm aluminum thickness/μm perovskite thickness/μm structure length/μm center diagonal length/μm inside diameter of outer frame/μm outer diameter of outer frame/μm
    0.1 160 1.6 1.6 880 390 740 800
    1 20 0.2 0.2 110 68 96 104
    2 20 0.2 0.2 110 51 96 104
    6 4 0.04 0.04 22 17 19 20
    下载: 导出CSV
  • [1] 范玉衡, 杨闯, 彭木根. 感知协同太赫兹多天线移动通信: 原理、现状与展望[J]. 移动通信, 2023, 47(3):84-91

    Fan Yuheng, Yang Chuang, Peng Mugen. Sensing-aided terahertz MIMO mobile communication: Principle, status and prospect[J]. Mobile Communications, 2023, 47(3): 84-91
    [2] 邓新新, 刘炳伟, 刘竞博, 等. 太赫兹超材料生物检测应用研究进展[J]. 太赫兹科学与电子信息学报, 2022, 20(11):1113-1122

    Deng Xinxin, Liu Bingwei, Liu Jingbo, et al. Research progress of terahertz metamaterials in biological detection applications[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1113-1122
    [3] 吕钟鸣, 吴静珠, 杨佳滢, 等. 太赫兹衰减全反射技术对花生冻伤快速判别研究[J]. 食品安全质量检测学报, 2023, 14(5):23-29

    Lü Zhongming, Wu Jingzhu, Yang Jiaying, et al. Rapid identification of peanut frostbite based on terahertz attenuated total reflection technique[J]. Journal of Food Safety and Quality, 2023, 14(5): 23-29
    [4] 姚建铨, 李杰, 张雅婷, 等. 太赫兹波调控技术: 驾驭太赫兹之光[J]. 自然杂志, 2023, 45(1):1-16

    Yao Jianquan, Li Jie, Zhang Yating, et al. Technology for terahertz wave manipulation: harnessing the light of terahertz[J]. Chinese Journal of Nature, 2023, 45(1): 1-16
    [5] 刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1):46-55

    Liu Junfeng, Liu Shuo, Fu Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55
    [6] 梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18):27-39

    Mei Zhonglei, Zhang Li, Cui Tiejun. Recent advances on metamaterials[J]. Science & Technology Review, 2016, 34(18): 27-39
    [7] 张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1):1-12

    Zhang Lei, Liu Shuo, Cui Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12
    [8] Consales M, del Villar I, Matias I R, et al. Lab on fiber technology towards advanced and multifunctional point-of-care platforms for precision medicine[M]//Narayan R. Encyclopedia of Sensors and Biosensors. Elsevier, 2023, 4: 504-527.
    [9] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [10] 张磊, 陈晓晴, 郑熠宁, 等. 电磁超表面与信息超表面[J]. 电波科学学报, 2021, 36(6):817-828

    Zhang Lei, Chen Xiaoqing, Zheng Yining, et al. Electromagnetic metasurfaces and information metasurfaces[J]. Chinese Journal of Radio Science, 2021, 36(6): 817-828
    [11] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3):255-275,376

    Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255-275,376
    [12] Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218.
    [13] 高峰, 朱晨岳, 李景悦, 等. 基于氧化铟锡主动超表面的相位调制[J]. 激光与光电子学进展, 2022, 59:0405001

    Gao Feng, Zhu Chenyue, Li Jingyue, et al. ITO-based active metasurfaces with phase tunability[J]. Laser & Optoelectronics Progress, 2022, 59: 0405001
    [14] Zhang Xin’ge, Jiang Weixiang, Jiang Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165-171. doi: 10.1038/s41928-020-0380-5
    [15] 韩飞, 王玲玲, 林媛, 等. 有机硅在钙钛矿太阳能电池中的应用[J]. 陶瓷学报, 2023, 44(1):12-27

    Han Fei, Wang Lingling, Lin Yuan, et al. Application of organosilicon in perovskite solar cells[J]. Journal of Ceramics, 2023, 44(1): 12-27
    [16] 姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64:038805 doi: 10.7498/aps.64.038805

    Yao Xin, Ding Yanli, Zhang Xiaodan, et al. A review of the perovskite solar cells[J]. Acta Physica Sinica, 2015, 64: 038805 doi: 10.7498/aps.64.038805
    [17] 陆新荣, 赵颖, 刘建, 等. ABX3型钙钛矿光伏材料的结构与性质调控[J]. 无机化学学报, 2015, 31(9):1678-1686

    Lu Xinrong, Zhao Ying, Liu Jian, et al. Modulation of the structure and property of ABX3 type perovskite photovoltaic material[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1678-1686
    [18] 闫昕, 梁兰菊, 张雅婷, 等. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究[J]. 物理学报, 2015, 64:158101 doi: 10.7498/aps.64.158101

    Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica, 2015, 64: 158101 doi: 10.7498/aps.64.158101
    [19] 李佳辉, 张雅婷, 李吉宁, 等. 基于二氧化钒的太赫兹编码超表面[J]. 物理学报, 2020, 69:228101 doi: 10.7498/aps.69.20200891

    Li Jiahui, Zhang Yating, Li Jining, et al. Terahertz coding metasurface based vanadium dioxide[J]. Acta Physica Sinica, 2020, 69: 228101 doi: 10.7498/aps.69.20200891
    [20] 李增霖, 唐华伟, 徐文霞, 等. 太赫兹波束可调谐的编码超表面设计[J]. 电波科学学报, 2021, 36(6):932-937

    Li Zenglin, Tang Huawei, Xu Wenxia, et al. Coding metasurface design for terahertz beam shaping[J]. Chinese Journal of Radio Science, 2021, 36(6): 932-937
    [21] Li Jie, Zhang Yating, Li Jining, et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces.[J]. Nanoscale, 2019, 11(12): 5746-5753. doi: 10.1039/C9NR00675C
    [22] Wang Hailin, Ma Huifeng, Cui Tiejun. A polarization-modulated information metasurface for encryption wireless communications[J]. Advanced Science, 2022, 9: 2204333. doi: 10.1002/advs.202204333
    [23] Li Yifan, Zhang Yating, Li Tengteng, et al. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors[J]. Nano Letters, 2020, 20(8): 5646-5654. doi: 10.1021/acs.nanolett.0c00082
    [24] Wilson J N, Frost J M, Wallace S K, et al. Dielectric and ferroic properties of metal halide perovskites[J]. APL Materials, 2019, 7: 010901. doi: 10.1063/1.5079633
    [25] 李培, 刘颖, 李鹏, 等. 基于极化旋转超表面的天线RCS减缩方法[J]. 电子信息对抗技术, 2021, 36(5):84-89

    Li Pei, Liu Ying, Li Peng, et al. An antenna RCS reduction method based on polarization conversion meta-surface[J]. Electronic Information Warfare Technology, 2021, 36(5): 84-89
    [26] 庄亚强, 张晨新, 张小宽, 等. 典型隐身飞机动态RCS仿真及统计分析[J]. 微波学报, 2014, 30(5):17-21

    Zhuang Yaqiang, Zhang Chenxin, Zhang Xiaokuan, et al. Statistical analysis and simulation of typical stealth aircraft dynamic RCS[J]. Journal of Microwaves, 2014, 30(5): 17-21
    [27] 李勇峰, 张介秋, 屈绍波, 等. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证[J]. 物理学报, 2014, 63:084103 doi: 10.7498/aps.63.084103

    Li Yongfeng, Zhang Jieqiu, Qu Shaobo, et al. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction[J]. Acta Physica Sinica, 2014, 63: 084103 doi: 10.7498/aps.63.084103
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  126
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-10-13
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回