留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无氧铜表面处理在束流准直器中的应用

余洁冰 谭彪 康玲 刘磊 王鹏程 翁旭东 陈佳鑫 聂小军 王广源 王明 宁常军 刘仁洪 张俊嵩 于永积

余洁冰, 谭彪, 康玲, 等. 无氧铜表面处理在束流准直器中的应用[J]. 强激光与粒子束, 2023, 35: 106002. doi: 10.11884/HPLPB202335.230129
引用本文: 余洁冰, 谭彪, 康玲, 等. 无氧铜表面处理在束流准直器中的应用[J]. 强激光与粒子束, 2023, 35: 106002. doi: 10.11884/HPLPB202335.230129
Yu Jiebing, Tan Biao, Kang Ling, et al. Application of oxygen-free copper surface treatment in beam collimator[J]. High Power Laser and Particle Beams, 2023, 35: 106002. doi: 10.11884/HPLPB202335.230129
Citation: Yu Jiebing, Tan Biao, Kang Ling, et al. Application of oxygen-free copper surface treatment in beam collimator[J]. High Power Laser and Particle Beams, 2023, 35: 106002. doi: 10.11884/HPLPB202335.230129

无氧铜表面处理在束流准直器中的应用

doi: 10.11884/HPLPB202335.230129
基金项目: 国家自然科学基金项目(11975253,12105296);广东省自然科学基金项目(2018A030313959)
详细信息
    作者简介:

    余洁冰,yujb@ihep.ac.cn

    通讯作者:

    谭 彪,tanbiao@ihep.ac.cn

  • 中图分类号: TL503.7;O328

Application of oxygen-free copper surface treatment in beam collimator

  • 摘要: 束流准直器作为加速器的关键部件,用于吸收不在预定轨道的束晕粒子。因良好的电导率和良好的准直效率,铜被广泛应用于准直器中作为挡块材料。通常,挡块位于超高真空环境中,承受高功率束流载荷冲击,其不同表面处理工艺直接影响传热性能及放气率。为评估无氧铜表面处理工艺对相关性能的影响,分别对其进行表面化学腐蚀发黑处理、高温氧化处理以及仅机械加工处理,结果表明:无氧铜表面发黑处理后,其热辐射系数明显增加,同时也伴随着放气率的明显增加;而通过高温氧化处理后的铜块,其表面热辐射系数与仅机械加工后的铜块差异不大,放气率有一定程度的增加。以散裂中子源二期项目中的动量准直器为研究对象,在一定的束流载荷作用下,挡块选用发黑无氧铜,可将其最高温度控制在125 ℃以下,同时增加两台离子泵可使该准直器所在区域真空度满足运行要求。
  • 图  1  制备的3种无氧铜样品

    Figure  1.  Oxygen-free copper samples

    图  2  3种无氧铜样品在不同温度下的热辐射系数

    Figure  2.  Emissivity of three oxygen-free copper samples at different temperatures

    图  3  发黑无氧铜样品表面放气率测试

    Figure  3.  Test of the outgassing rate of blackened oxygen-free copper sample

    图  4  三种无氧铜样品表面放气率测试结果

    Figure  4.  Outgassing rate of the three oxygen-free copper samples

    图  5  不同表面处理下的动量准直器挡块温度分布云图

    Figure  5.  Temperature distribution of the collimator absorber with different surface treatment

    图  6  R1区段离子泵及冷阴极规分布

    Figure  6.  Distribution of the ion pumps and cold cathode gauges in R1 section

    图  7  不同情况下1/2的R1区段真空度分布

    Figure  7.  Distribution of pressure in half of the R1 section with different conditions

  • [1] Yamamoto K, Kinsho M. Development of the collimator system for the 3 GeV rapid cycling synchrotron[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 1365-1367.
    [2] Wei Tao, Qin Qing. Design of the two-stage collimation system for CSNS/RCS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 566(2): 212-217.
    [3] 魏涛. 中国散裂中子源快循环同步加速器束损研究[D]. 北京: 中国科学院高能物理研究所, 2008: 53-55

    Wei Tao. Beam loss studies on the rapid cycling synchrotron of China Spallation Neutron Source[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2008: 53-55
    [4] Wang Na, Wang Sheng, Huang Nan, et al. The design of beam collimation system for CSNS/RCS[C]//Proceedings of HB2010. 2010: 572-575.
    [5] 余洁冰, 吴青彪, 吴煊, 等. CSNS/RCS次级准直器吸收体的冷却设计[J]. 强激光与粒子束, 2018, 30:085105 doi: 10.11884/HPLPB201830.170504

    Yu Jiebing, Wu Qingbiao, Wu Xuan, et al. Cooling design of secondary collimator absorbers at CSNS/RCS[J]. High Power Laser and Particle Beams, 2018, 30: 085105 doi: 10.11884/HPLPB201830.170504
    [6] 邹易清, 康玲, 屈化民, 等. 中国散裂中子源快循环同步加速器主准直器的设计与研究[J]. 强激光与粒子束, 2013, 25(3):741-745 doi: 10.3788/HPLPB20132503.0741

    Zou Yiqing, Kang Ling, Qu Huamin, et al. Chromatic correction for CSNS/RCS and nonlinear effects of chromaticity sextupoles[J]. High Power Laser and Particle Beams, 2013, 25(3): 741-745 doi: 10.3788/HPLPB20132503.0741
    [7] Zou Yiqing, Wang Na, Kang Ling, et al. Thermal analysis and cooling structure design of the primary collimator in CSNS/RCS[J]. Chinese Physics C, 2013, 37: 057004. doi: 10.1088/1674-1137/37/5/057004
    [8] 杨建权. 超级质子对撞机SPPC束流准直方法的研究[D]. 北京: 中国科学院高能物理研究所, 2019: 81-83

    Yang Jianquan. Collimation method studies for the SPPC[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2019: 81-83
    [9] Smith H V, Adams D J, Jones B, et al. Activation models of the ISIS collectors[C]//Proceedings of 5th International Particle Accelerator Conference. 2014: 893-895.
    [10] Yamamoto K. The beam collimator system of J-PARC rapid cycling synchrotron[C]//Proceedings of HB2008. 2008: 1-55.
    [11] Yamamoto K, Okazaki M, Hirooka Y, et al. Present status of beam collimation system of J-PARC RCS[C]//Proceedings of EPAC 2006. 2006: 3200-3202.
    [12] Ishibashi T, Terui S, Suetsugu Y, et al. Movable collimator system for SuperKEKB[J]. Physical Review Accelerators and Beams, 2020, 23: 053501. doi: 10.1103/PhysRevAccelBeams.23.053501
    [13] Bertarelli A, Dallocchio A, Gentini L, et al. Mechanical engineering and design of the LHC Phase II collimators[C]//Proceedings of the 1st International Particle Accelerator Conference. 2010: 1683-1685.
    [14] Boccard C, Dallocchio A, Bertarelli A, et al. Embedded collimator beam position monitors[C]//Proceedings of the 10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators. 2011: 80-82.
    [15] 葛绍岩. 金属及其他物质的热辐射性质表[M]. 北京: 科学出版社, 1958

    Ge Shaoyan. Thermal radiation properties of metals and other substances[M]. Beijing: Science Press, 1958
    [16] 许令顺, 李勇, 徐中堂, 等. 几种不同铜表面发黑技术的对比[J]. 中国表面工程, 2013, 26(6):75-79

    Xu Lingshun, Li Yong, Xu Zhongtang, et al. Comparation of several different blacken technologies of copper surface[J]. China Surface Engineering, 2013, 26(6): 75-79
    [17] 张忠诚, 张红兵. 黄铜表面的发黑处理研究[J]. 中国表面工程, 2003, 16(1):41-42,48 doi: 10.3321/j.issn:1007-9289.2003.01.012

    Zhang Zhongcheng, Zhang Hongbing. Study on surface blackening treatment of brass[J]. China Surface Engineering, 2003, 16(1): 41-42,48 doi: 10.3321/j.issn:1007-9289.2003.01.012
    [18] 刘彬云, 薛怀玉, 王群, 等. 环保型非甲醛化学镀铜发黑问题初探[J]. 印制电路信息, 2007(3):48-50 doi: 10.3969/j.issn.1009-0096.2007.03.013

    Liu Binyun, Xue Huaiyu, Wang Qun, et al. Environmentally friendly non-formaldehyde PTH darkness preliminary investigation[J]. Printed Circuit Information, 2007(3): 48-50 doi: 10.3969/j.issn.1009-0096.2007.03.013
    [19] Yu Jiebing, Xu Shouyan, Wu Qingbiao, et al. Operation status of CSNS/RCS transverse collimation system[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 1862-1864.
    [20] 关玉慧, 宋洪, 董海义, 等. 常见放气率测试方法的量化比较[J]. 真空科学与技术学报, 2020, 40(6):524-530 doi: 10.13922/j.cnki.cjovst.2020.06.05

    Guan Yuhui, Song Hong, Dong Haiyi, et al. Measurement of low outgassing-rate in self-developed pumping-path switching algorithm: a methodological study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(6): 524-530 doi: 10.13922/j.cnki.cjovst.2020.06.05
    [21] 张涤新, 曾祥坡, 冯焱, 等. 材料放气率测量方法评述[J]. 真空, 2010, 47(6):1-5 doi: 10.13385/j.cnki.vacuum.2010.06.007

    Zhang Dixin, Zeng Xiangpo, Feng Yan, et al. Review of measuring methods of outgassing rate[J]. Vacuum, 2010, 47(6): 1-5 doi: 10.13385/j.cnki.vacuum.2010.06.007
    [22] 郭迪舟, 张军辉, 蒙峻, 等. 基于双通道方法对不锈钢高温出气性能的研究[J]. 真空科学与技术学报, 2011, 31(3):368-371 doi: 10.3969/j.issn.1672-7126.2011.03.23

    Guo Dizhou, Zhang Junhui, Meng Jun, et al. Evaluation of high temperature outgassing rates of stainless steel in method of switching between two pumping paths[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31(3): 368-371 doi: 10.3969/j.issn.1672-7126.2011.03.23
    [23] 冯焱, 曾祥坡, 张涤新, 等. 小孔流导法材料放气率测量装置的设计[J]. 宇航计测技术, 2010, 30(3):66-69 doi: 10.3969/j.issn.1000-7202.2010.03.016

    Feng Yan, Zeng Xiangpo, Zhang Dixin, et al. Design of measurement apparatus for material outgassing rates by orifice conductance method[J]. Journal of Astronautic Metrology and Measurement, 2010, 30(3): 66-69 doi: 10.3969/j.issn.1000-7202.2010.03.016
    [24] 曾祥坡, 张涤新, 冯焱, 等. 小孔流导法测量材料放气率研究[J]. 真空, 2010, 47(3):55-58 doi: 10.13385/j.cnki.vacuum.2010.03.009

    Zeng Xiangpo, Zhang Dixin, Feng Yan, et al. Study on measuring outgassing rate of materials via orifice throughput method[J]. Vacuum, 2010, 47(3): 55-58 doi: 10.13385/j.cnki.vacuum.2010.03.009
  • 加载中
图(7)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  84
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-08-11
  • 录用日期:  2023-08-25
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回