留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HLS-II直线加速器能量调节及应用

倪汪彪 于永波 宣科 徐卫 李川 刘功发

倪汪彪, 于永波, 宣科, 等. HLS-II直线加速器能量调节及应用[J]. 强激光与粒子束, 2023, 35: 094002. doi: 10.11884/HPLPB202335.230144
引用本文: 倪汪彪, 于永波, 宣科, 等. HLS-II直线加速器能量调节及应用[J]. 强激光与粒子束, 2023, 35: 094002. doi: 10.11884/HPLPB202335.230144
Ni Wangbiao, Yu Yongbo, Xuan Ke, et al. Energy adjustment and application of the HLS-II linac[J]. High Power Laser and Particle Beams, 2023, 35: 094002. doi: 10.11884/HPLPB202335.230144
Citation: Ni Wangbiao, Yu Yongbo, Xuan Ke, et al. Energy adjustment and application of the HLS-II linac[J]. High Power Laser and Particle Beams, 2023, 35: 094002. doi: 10.11884/HPLPB202335.230144

HLS-II直线加速器能量调节及应用

doi: 10.11884/HPLPB202335.230144
基金项目: 国家自然科学基金项目(11975227) 中国科学院合肥大科学中心项目(2019HSC-KPRD003)
详细信息
    作者简介:

    倪汪彪,niwangb@mail.ustc.edu.cn

    通讯作者:

    宣 科,xuanke@ustc.edu.cn

  • 中图分类号: TL503.6

Energy adjustment and application of the HLS-II linac

  • 摘要: 为了高效地对直线加速器输出束流能量进行调节,设计了合肥光源(HLS-II)直线加速器束流能量调节方案。该方案在调试阶段通过能谱分析系统观察束团状态并测量束流能量,储存环注入阶段使用3个束流位置探测器(BPM)对束流能量进行在线测量;使用自动相位扫描程序对速调管输出相位进行扫描,获得各加速段的能量增益公式;定量调节速调管的输出相位和高压,实现直线加速器输出束流能量的快速调节。在线应用结果表明,该方案能快速实现束流能量调节,调节后的束流具有良好品质,束流横向能散小于0.22%,注入速率明显改善。
  • 图  1  HLS-II直线加速器及开关磁铁后部分元件布局图

    Figure  1.  Layout of the HLS-II linac and some components behind the switch magnet

    图  2  自动相位扫描程序流程图

    Figure  2.  Flowchart of the automatic phase scanning program

    图  3  自动相位扫描图形界面

    Figure  3.  Automatic phase scanning interface

    图  4  KLY7、KLY8高压与峰值加速相位的关系以及高压与最大能量增益的关系

    Figure  4.  Relationship between high voltage and peak acceleration phase and relationship between high voltage and maximum energy gain for KLY7 and KLY8

    图  5  相位调节示意图

    Figure  5.  Schematic diagram of phase adjustment

    图  6  束流能量调节前后能散对比

    Figure  6.  Comparison of energy spread before and after beam energy adjustment

    图  7  注入阶段开启能量调节前后束流能量与注入速率对比

    Figure  7.  Comparison of beam energy and injection rate before and after opening energy adjustment during injection stage

    表  1  KLY3~KLY8自动相位扫描结果

    Table  1.   Automatic phase scanning results of KLY3~KLY8

    klystronpeak output power/MWoperating high voltage/kVenergy gain formula
    KLY35044${E_3} = 97.78\cos ({\varphi _3} + 179.38^\circ )$
    KLY45044${E_4} = 93.64\cos ({\varphi _4} - 173.98^\circ )$
    KLY55044${E_5} = 90.66\cos ({\varphi _5} + 79.58^\circ )$
    KLY65044${E_6} = 95.16\cos ({\varphi _6} + 31.04^\circ )$
    KLY75044${E_7} = 96.16\cos ({\varphi _7} + 148.82^\circ )$
    KLY88044${E_8} = 124.01\cos ({\varphi _8} + 38.11^\circ )$
    下载: 导出CSV

    表  2  KLY7、KLY8高压与峰值加速相位以及高压与最大能量增益拟合结果

    Table  2.   Fitting results of the high voltage with peak acceleration phase and the high voltage with maximum energy gain for KLY7 and KLY8

    klystronfitting results of klystron high voltage and
    maximum energy gain
    fitting results of klystron high voltage and
    peak acceleration phase
    KLY7${A_7} = 2.93{U_7} - 33.06$${\varphi _{7\max}} = - 9.77{U_7} + 280.9$
    KLY8${A_8} = 4.95{U_8} - 96.35$${\varphi _{8\max}} = - 10.52{U_8} + 425.8$
    下载: 导出CSV
  • [1] Cheng Chaocai, Sun Baogen, Yang Yongliang, et al. Beam size and position measurement based on logarithm processing algorithm in HLS II[J]. Chinese Physics C, 2016, 40: 047004. doi: 10.1088/1674-1137/40/4/047004
    [2] Bai Zhenghe, Wang Lin, Jia Qika, et al. Lattice optimization for the HLS-II storage ring[J]. Chinese Physics C, 2013, 37: 017001. doi: 10.1088/1674-1137/37/1/017001
    [3] Zheng Jiajun, Yang Yongliang, Sun Baogen, et al. Central RF frequency measurement of the HLS-II storage ring[J]. Chinese Physics C, 2016, 40: 047005. doi: 10.1088/1674-1137/40/4/047005
    [4] 王雪涛, 黄贵荣, 林宏翔, 等. HLS 800 MeV直线加速器相位控制系统的研制[J]. 核技术, 2012, 35(8):578-582

    Wang Xuetao, Huang Guirong, Lin Hongxiang, et al. Development of HLS 800 MeV Linac phase control system[J]. Nuclear Techniques, 2012, 35(8): 578-582
    [5] 肖淑英, 赵明华. SSRF 150 MeV直线加速器的能量稳定系统设计及仿真[J]. 核电子学与探测技术, 2010, 30(5):606-609

    Xiao Shuying, Zhao Minghua. Research on the energy stability of 150 MeV LINAC in SSRF and system simulation[J]. Nuclear Electronics & Detection Technology, 2010, 30(5): 606-609
    [6] Kim C, Kim M, Hwang I, et al. Energy feedback system for the PLS-II Linac[J]. Journal of the Korean Physical Society, 2017, 71(11): 775-779. doi: 10.3938/jkps.71.775
    [7] Meier E, Biedron S G, LeBlanc G, et al. Development of a combined feed forward-feedback system for an electron Linac[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 609(2/3): 79-88.
    [8] Furukawa K, Enomoto A, Kamikubota N, et al. Energy feedback systems at the KEKB injector linac[C]//Proceedings of the International Conference on Accelerator and Large Experimental Physics Control Systems. 1999: 248-250.
    [9] 王少哲, 池云龙, 刘熔, 等. BEPCⅡ直线加速器束流能量反馈系统设计[J]. 核电子学与探测技术, 2016, 36(11):1152-1155,1159

    Wang Shaozhe, Chi Yunlong, Liu Rong, et al. Design of the beam energy feedback system in BEPCII Linac[J]. Nuclear Electronics & Detection Technology, 2016, 36(11): 1152-1155,1159
    [10] 任天祺, 唐雷雷, 周泽然. 基于MTCA的HLS-II直线加速器低电平系统改造[J]. 强激光与粒子束, 2020, 32:084006 doi: 10.11884/HPLPB202032.200080

    Ren Tianqi, Tang Leilei, Zhou Zeran. Upgrade of low level RF system based on micro telecom computing architecture (MTCA) for HLS-II LINAC[J]. High Power Laser and Particle Beams, 2020, 32: 084006 doi: 10.11884/HPLPB202032.200080
    [11] 江孝国, 董晓娜, 王远, 等. 瞬态光学渡越辐射测量系统的设计[J]. 强激光与粒子束, 2010, 22(9):2147-2150 doi: 10.3788/HPLPB20102209.2147

    Jiang Xiaoguo, Dong Xiaona, Wang Yuan, et al. Design of instantaneous measurement system based on optical transition radiation[J]. High Power Laser and Particle Beams, 2010, 22(9): 2147-2150 doi: 10.3788/HPLPB20102209.2147
    [12] Wang S, Iqbal M, Liu R, et al. Online beam energy measurement of Beijing electron positron collider II linear accelerator[J]. Review of Scientific Instruments, 2016, 87: 023301. doi: 10.1063/1.4941680
    [13] Barofsky D, Henriques A, Crisp D, et al. Automation of the ReAccelerator linac phasing[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 2170-2172.
    [14] 李承羲, 罗箐, 刘功发, 等. 基于Lattice Server中间件的束流光学参数测量[J]. 强激光与粒子束, 2020, 32:084004 doi: 10.11884/HPLPB202032.200054

    Li Chengxi, Luo Qing, Liu Gongfa, et al. Beam optical parameter measurement based on Lattice Server middlelayer[J]. High Power Laser and Particle Beams, 2020, 32: 084004 doi: 10.11884/HPLPB202032.200054
    [15] Gu Pengda, Gen Zheqiao, Cui Yanyan, et al. Design studies of RF phasing system for BEPCII Linac[J]. Chinese Physics C, 2005, 29(3): 316-320.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  155
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-07-19
  • 录用日期:  2023-07-19
  • 网络出版日期:  2023-07-28
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回