留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高精度3D打印工艺的ICF调制靶

林祖德 戴羽 徐梦飞 曹佳炜 郑坤宇 魏宁 韩良智 王晓林 刘景全

林祖德, 戴羽, 徐梦飞, 等. 基于高精度3D打印工艺的ICF调制靶[J]. 强激光与粒子束, 2023, 35: 102001. doi: 10.11884/HPLPB202335.230146
引用本文: 林祖德, 戴羽, 徐梦飞, 等. 基于高精度3D打印工艺的ICF调制靶[J]. 强激光与粒子束, 2023, 35: 102001. doi: 10.11884/HPLPB202335.230146
Lin Zude, Dai Yu, Xu Mengfei, et al. ICF modulation targets based on high-precision 3D printing technology[J]. High Power Laser and Particle Beams, 2023, 35: 102001. doi: 10.11884/HPLPB202335.230146
Citation: Lin Zude, Dai Yu, Xu Mengfei, et al. ICF modulation targets based on high-precision 3D printing technology[J]. High Power Laser and Particle Beams, 2023, 35: 102001. doi: 10.11884/HPLPB202335.230146

基于高精度3D打印工艺的ICF调制靶

doi: 10.11884/HPLPB202335.230146
基金项目: 中科院战略性先导科技专项(XDA25040100, XDA25040200, XDA25040300)
详细信息
    作者简介:

    林祖德,linzude@sjtu.edu.cn

    通讯作者:

    刘景全,jqliu@sjtu.edu.cn

  • 中图分类号: TL649

ICF modulation targets based on high-precision 3D printing technology

  • 摘要: 惯性约束聚变(ICF)中的瑞利-泰勒不稳定性(RTI)研究需要基于多种结构的调制靶,针对目前调制靶制备的工艺问题,采用双光子3D打印工艺制备了平面调制、平面复合调制及球壳型调制三种典型结构的调制靶,靶材料为光敏树脂(95%:C23H38N2O8,5%:C4H6O2)。采用激光共聚焦显微成像分析了三种调制靶的实际结构参数,三种靶型的实测形貌及其参数与设计结构及参数具有良好匹配度。为进一步验证双光子3D打印新型工艺制备调制靶的可行性,实验团队在“神光Ⅱ”高功率激光实验装置上进行了纳秒激光打靶实验,结果显示靶表面的调制在激光直接驱动下受RTI的作用随时间呈增长趋势,初始峰谷值为4 μm的调制在激光驱动2.5 ns后形成了长度达100 μm的高密度射流,表明基于高精度3D打印工艺制备结构复杂的调制靶用于RTI研究具有较高可行性。
  • 图  1  双光子3D打印制靶工艺

    Figure  1.  Two-photon polymerization based 3D printing of target

    图  2  平面调制靶结构设计图

    Figure  2.  Design diagram of the planar modulation target

    图  3  复合平面调制靶结构设计图

    Figure  3.  Design diagram of the composite planar modulation target

    图  4  球壳型调制靶结构设计

    Figure  4.  Design diagram of the spherical shell modulation target

    图  5  平面调制靶光学照片及表面扫描结果

    Figure  5.  Optical photo and measurement result of the planar modulation target

    图  6  平面调制靶表面轮廓激光共聚焦扫描结果

    Figure  6.  Laser confocal scanning images of the planar modulation target

    图  7  复合平面调制靶表面轮廓激光共聚焦扫描结果

    Figure  7.  Laser confocal scanning images of the composite planar modulation target

    图  8  球壳型调制靶光学照片及顶部激光共聚焦扫描图像

    Figure  8.  Optical photo and laser confocal scanning result of spherical shell modulation target

    图  9  平面调制靶在纳秒激光直接驱动下不同时间的X射线分幅相机成像

    Figure  9.  X-ray framing camera imaging of planar modulated target under nanosecond laser direct driving

  • [1] 单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235

    Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004. doi: 10.11884/HPLPB202133.200235
    [2] 王淦昌, 王乃彦. 惯性约束核聚变的进展和展望(I)[J]. 核科学与工程, 1989, 9(3):193-207

    Wang Ganchang, Wang Naiyan. The progress and prospect in the inertial confinement fusion[J]. Chinese Journal of Nuclear Science and Engineering, 1989, 9(3): 193-207.
    [3] 李恩德, 杨泽平, 官春林, 等. 我国惯性约束聚变领域中的波前控制技术[J]. 光电工程, 2020, 47:200344

    Li Ende, Yang Zeping, Guan Chunlin, et al. Wavefront control technology for ICF facility in China[J]. Opto-Electronic Engineering, 2020, 47: 200344.
    [4] Khan N, Sharma P K. Investigation of Rayleigh–Taylor instability and internal waves in strongly coupled rotating magnetized quantum plasma[J]. Journal of Astrophysics and Astronomy, 2023, 44: 7. doi: 10.1007/s12036-022-09903-x
    [5] Schmitt A J, Obenschain S P. The importance of laser wavelength for driving inertial confinement fusion targets. II. Target design[J]. Physics of Plasmas, 2023, 30: 012702. doi: 10.1063/5.0118093
    [6] Kuang Yuanyuan, Lu Yan, Lin Zhi, et al. Coupled model analysis of the ablative Rayleigh–Taylor instability[J]. Plasma Science and Technology, 2023, 25: 055201. doi: 10.1088/2058-6272/acac64
    [7] 曹柱荣, 缪文勇, 董建军, 等. 烧蚀RT不稳定性X射线分幅诊断研究进展[J]. 物理学报, 2012, 61:075213 doi: 10.7498/aps.61.075213

    Cao Zhurong, Miao Wenyong, Dong Jianjun, et al. Experiment progress of ablative Rayleigh-Taylor instability based on X-ray framing camera[J]. Acta Physica Sinica, 2012, 61: 075213. doi: 10.7498/aps.61.075213
    [8] 缪文勇, 袁永腾, 丁永坤, 等. 神光Ⅱ装置上辐射驱动瑞利-泰勒不稳定性实验[J]. 强激光与粒子束, 2015, 27:032016 doi: 10.11884/HPLPB201527.032016

    Miao Wenyong, Yuan Yongteng, Ding Yongkun, et al. Experiments of radiation–driven Rayleigh-Taylor instability on the Shenguang-Ⅱ laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 032016. doi: 10.11884/HPLPB201527.032016
    [9] Tang Jun, Xie Zhiyong, Du Ai, et al. Design and fabrication of a CH/RF/CH tri-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Journal of Fusion Energy, 2016, 35(2): 357-364. doi: 10.1007/s10894-015-0037-y
    [10] Tang Jun, Xie Zhiyong, Du Ai, et al. Design and fabrication of a CH/Al dual-layer perturbation target for hydrodynamic instability experiments in ICF[J]. Fusion Engineering and Design, 2014, 89(4): 466-472. doi: 10.1016/j.fusengdes.2014.04.009
    [11] 朱秀榕, 周斌, 杜艾, 等. ICF分解实验用双介质调制靶的研制[J]. 强激光与粒子束, 2014, 26:012004 doi: 10.3788/HPLPB20142601.12004

    Zhu Xiurong, Zhou Bin, Du Ai, et al. Fabrication of dual-layer perturbation target for ICF resolved experiments[J]. High Power Laser and Particle Beams, 2014, 26: 012004. doi: 10.3788/HPLPB20142601.12004
    [12] 孙骐, 周斌, 沈军, 等. ICF研究中的Rayleigh-Taylor不稳定性实验用靶[J]. 强激光与粒子束, 2004, 16(12):1535-1539

    Sun Qi, Zhou Bin, Shen Jun, et al. Modulation targets in Rayleigh-Taylor instability experiments for the ICF study[J]. High Power Laser and Particle Beams, 2004, 16(12): 1535-1539.
    [13] 周斌, 孙骐, 黄耀东, 等. ICF分解实验中的平面调制靶和薄膜靶的研制[J]. 原子能科学技术, 2004, 38(1):79-83 doi: 10.3969/j.issn.1000-6931.2004.01.016

    Zhou Bin, Sun Qi, Huang Yaodong, et al. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment[J]. Atomic Energy Science and Technology, 2004, 38(1): 79-83. doi: 10.3969/j.issn.1000-6931.2004.01.016
    [14] Hsieh E J, Hatcher C W, Miller D E. Summary abstract: fabrication of Rayleigh–Taylor instability experiment targets[J]. Journal of Vacuum Science & Technology A, 1985, 3(3): 1278-1279.
    [15] Schappert G T, Batha S H, Klare K A, et al. Rayleigh–Taylor spike evaporation[J]. Physics of Plasmas, 2001, 8(9): 4156-4162. doi: 10.1063/1.1386802
    [16] 黄燕华, 高党忠, 谢军, 等. 平面调制靶的正弦波曲面超精密加工与表征[J]. 强激光与粒子束, 2012, 24(6):1429-1433 doi: 10.3788/HPLPB20122406.1429

    Huang Yanhua, Gao Dangzhong, Xie Jun, et al. Ultra-precision machining and characterizing of sinusoidal surface of surface perturbation target[J]. High Power Laser and Particle Beams, 2012, 24(6): 1429-1433. doi: 10.3788/HPLPB20122406.1429
  • 加载中
图(9)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  50
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-09-15
  • 录用日期:  2023-09-16
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回