留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的地球静止轨道质子能谱反演

陈建飞 周宏涛 方美华 吴康 宋定一

陈建飞, 周宏涛, 方美华, 等. 基于机器学习的地球静止轨道质子能谱反演[J]. 强激光与粒子束, 2023, 35: 104002. doi: 10.11884/HPLPB202335.230149
引用本文: 陈建飞, 周宏涛, 方美华, 等. 基于机器学习的地球静止轨道质子能谱反演[J]. 强激光与粒子束, 2023, 35: 104002. doi: 10.11884/HPLPB202335.230149
Chen Jianfei, Zhou Hongtao, Fang Meihua, et al. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35: 104002. doi: 10.11884/HPLPB202335.230149
Citation: Chen Jianfei, Zhou Hongtao, Fang Meihua, et al. Geostationary orbital proton energy spectrum inversion based on machine learning[J]. High Power Laser and Particle Beams, 2023, 35: 104002. doi: 10.11884/HPLPB202335.230149

基于机器学习的地球静止轨道质子能谱反演

doi: 10.11884/HPLPB202335.230149
基金项目: 国家自然科学基金项目(42241148)
详细信息
    作者简介:

    陈建飞,2692058553@qq.com

    通讯作者:

    方美华,fmh_medphys@nuaa.edu.cn

  • 中图分类号: P353

Geostationary orbital proton energy spectrum inversion based on machine learning

  • 摘要: 根据地面中子探测与宇宙线环境之间的关联性,在太阳活动平静期以地球静止环境业务卫星及全球各个中子探测站的探测数据构建数据集。基于极端梯度提升决策树(XGBoost)和人工神经网络建立了由地面中子探测数据反演宇宙线质子环境的模型。模型采用遗传算法求解模型的最优超参数并对神经网络的各个神经元参数进行训练,实现了宇宙线质子环境在太阳活动平静期的反演,模型训练的均方差MSE为0.499,对测试集的平均反演误差分别为26.9%,对比航天常用的辐射环境模型误差通常在200%以内,提高显著。同时使用包括支持向量回归、误差反向传播算法、长短期记忆在内的多种其他机器学习算法进行了对比,结果表明本文所建立的模型具有训练时间短、计算速度快、占用资源小的优点。
  • 图  1  所有站点的磁纬度与其截止刚度的分布

    Figure  1.  Distribution of magnetic latitude and cutoffrigidity of all stations

    图  2  模型的MSE随迭代次数的变化

    Figure  2.  MSE of the model changes with the number of iterations

    图  3  太阳活动极小年模型的预测值与探测值及其他算法的对比

    Figure  3.  Fluxes calculated by our model and SVR, BP, LSTM models, in comparison with flux data detected by GOES10 detector in solar minimum

    图  4  太阳活动极大年模型的预测值与探测值及其他算法的对比

    Figure  4.  Fluxes calculated by our model and SVR, BP, LSTM models, in comparison with flux data detected by GOES13 detector in solar maximum

    图  5  太阳活动极小年模型的预测值与CREME96模型、AP8模型的对比

    Figure  5.  Calculated fluxes comparison among our model, the CREME96 model, and AP8 model in solar minimum

    图  6  太阳活动极大年模型的预测值与CREME96模型、AP8模型的对比

    Figure  6.  Calculated fluxes comparison among our model, the CREME96 model, and AP8 model in solar maximum

    表  1  数据集概况

    Table  1.   Dataset overview

    total data volume number of data used for the training set number of data used for the test set
    8 442 700 7 598 430 844 270
    下载: 导出CSV

    表  2  不同参数方案的各项指标

    Table  2.   Various indicators of different parameter schemes

    indicators MSE RMSE MRE/%
    default parameter scheme 0.605 0.778 19.6
    initial parameter scheme 0.635 0.797 25.5
    optimal parameter scheme 0.499 0.706 17.6
    下载: 导出CSV

    表  3  四种机器学习模型的指标对比

    Table  3.   Comparison of indicators for four machine learning models

    model MSE RMSE MRE/% training time/s
    GA-XGBoost 0.499 0.706 12.5 135
    SVR 2.632 1.622 264.6 620
    BP 0.641 0.801 84.2 3 625
    LSTM 0.131 0.361 17.5 6 390
    下载: 导出CSV
  • [1] Cao Meng, Deng Jiahao, He Weifan, et al. Geant4 simulation of energy deposition ratio and physical processes of CdZnTe crystals irradiated by high energy particles[J]. Applied Physics A, 2023, 129: 595. doi: 10.1007/s00339-023-06862-0
    [2] Loffredo F, Vardaci E, Bianco D, et al. Protons interaction with Nomex target: secondary radiation from a Monte Carlo simulation with Geant4[J]. Applied Sciences, 2022, 12: 2643. doi: 10.3390/app12052643
    [3] Ye Bing, Cai Li, Wu Zhaoxi, et al. Investigation of radiation response for III-V binary compound semiconductors due to protons using Geant4[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, 529: 38-48.
    [4] Loto'aniu T M, Singer H J, Rodriguez J V, et al. Space weather conditions during the Galaxy 15 spacecraft anomaly[J]. Space Weather, 2015, 13(8): 484-502. doi: 10.1002/2015SW001239
    [5] Davis A J, Mewaldt R A, Binns W R, et al. The evolution of galactic cosmic ray element spectra from solar minimum to solar maximum: ACE measurements[C]//Proceedings of the 27th International Cosmic Ray Conference. 2001: 1.
    [6] Badhwar G D, O'Neill P M. An improved model of galactic cosmic radiation for space exploration missions[C]//Proceedings of the 22nd International Cosmic Ray Conference. 1991: 643-646.
    [7] Nymmik R A. Initial conditions for radiation analysis: Models of galactic cosmic rays and solar particle events[J]. Advances in Space Research, 2006, 38(6): 1182-1190. doi: 10.1016/j.asr.2006.07.002
    [8] O’Neill P M. Badhwar-O'Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present[J]. Advances in Space Research, 2006, 37(9): 1727-1733. doi: 10.1016/j.asr.2005.02.001
    [9] Adams J H. Cosmic ray effects on microelectronics. Part I: the near-earth environment[R]. Memorandum: NRL Report, 1986, A506.
    [10] Belov A. Large scale modulation: view from the earth[J]. Space Science Reviews, 2000, 93(1): 79-105.
    [11] 都亨, 叶宗海. 低轨道航天器空间环境手册[M]. 北京: 国防工业出版社, 1996

    Du Heng, Ye Zonghai. Low orbit spacecraft space environment manual[M]. Beijing: National Defense Industry Press, 1996.
    [12] Tomassetti N, Bertucci B, Donnini F, et al. Data driven analysis of cosmic rays in the heliosphere: diffusion of cosmic protons[J]. Rendiconti Lincei. Scienze Fisiche e Naturali, 2023, 34(2): 333-338. doi: 10.1007/s12210-023-01149-1
    [13] Vette J I. The AE-8 trapped electron model environment[R]. Greenbelt: University of Michigan Library, 1991.
    [14] vakyan S V, Voronin N A, Nikol’sky G A. Response of atmospheric pressure and air temperature to the solar events in October 2003[J]. Geomagnetism and Aeronomy, 2015, 55(8): 1180-1185. doi: 10.1134/S0016793215080034
    [15] Kudela K, Storini M, Hofer M Y, et al. Cosmic rays in relation to space weather[J]. Space Science Reviews, 2000, 93(1): 153-174.
    [16] Solanik M, Bobík P, Genči J. Geliosphere-parallel CPU and GPU based models of cosmic ray modulation in the heliosphere[J]. Computer Physics Communications, 2023, 291: 108847. doi: 10.1016/j.cpc.2023.108847
    [17] 罗昊鑫, 姚宇翔, 潘文武, 等. 基于神经网络的消色差旋转双棱镜反向解算[J]. 强激光与粒子束, 2023, 35:071008 doi: 10.11884/HPLPB202335.220332

    Luo Haoxin, Yao Yuxiang, Pan Wenwu, et al. Inverse calculation of achromatic Risley prism based on neural network[J]. High Power Laser and Particle Beams, 2023, 35: 071008. doi: 10.11884/HPLPB202335.220332
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  106
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-09-16
  • 录用日期:  2023-09-16
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回