留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脉宽脉幅混合调制技术的功耗检测电路

邢胜博 马修泉 王长久 马新敏

邢胜博, 马修泉, 王长久, 等. 基于脉宽脉幅混合调制技术的功耗检测电路[J]. 强激光与粒子束, 2023, 35: 125001. doi: 10.11884/HPLPB202335.230152
引用本文: 邢胜博, 马修泉, 王长久, 等. 基于脉宽脉幅混合调制技术的功耗检测电路[J]. 强激光与粒子束, 2023, 35: 125001. doi: 10.11884/HPLPB202335.230152
Xing Shengbo, Ma Xiuquan, Wang Changjiu, et al. Power consumption detection circuit based on pulse width-pulse amplitude hybrid modulation strategy[J]. High Power Laser and Particle Beams, 2023, 35: 125001. doi: 10.11884/HPLPB202335.230152
Citation: Xing Shengbo, Ma Xiuquan, Wang Changjiu, et al. Power consumption detection circuit based on pulse width-pulse amplitude hybrid modulation strategy[J]. High Power Laser and Particle Beams, 2023, 35: 125001. doi: 10.11884/HPLPB202335.230152

基于脉宽脉幅混合调制技术的功耗检测电路

doi: 10.11884/HPLPB202335.230152
基金项目: 广东省基础与应用基础重大项目(2019B030302003)
详细信息
    作者简介:

    邢胜博,xingshengb@163.com

  • 中图分类号: TM933

Power consumption detection circuit based on pulse width-pulse amplitude hybrid modulation strategy

  • 摘要: 线性电源因其干扰小、动态响应速度快等优点被广泛用作半导体激光器驱动电源。针对线性电源中调整管易因功耗过大发生故障的问题,提出了一种脉宽脉幅混合调制方法,利用调整管漏源电压和漏极电流调制生成高频方波,通过平均值电路计算方波平均值,并基于此方法设计了一种调整管功耗检测电路。搭建实验平台对电路进行测试,结果表明,电路检测精度高、硬件成本低、响应速度快,最大检测误差为−2.64%,线性拟合度为0.9987,可广泛用于调整管的功耗检测以及安全区保护。
  • 图  1  串联反馈式线性电流源

    Figure  1.  Series feedback linear current source

    图  2  高频受调方波

    Figure  2.  High frequency modulated square wave

    图  3  基于PWAM技术的功耗检测电路原理框图

    Figure  3.  Power consumption detection circuit functional block diagram based on PWAM technology

    图  4  基于PWAM技术的功耗检测电路原理图

    Figure  4.  Power consumption detection circuit schematic diagram based on PWAM technology

    图  5  基于PWAM技术的功耗检测验证电路

    Figure  5.  Power detection of verification circuit based on PWAM technology

    图  6  不同工况下调制波形

    Figure  6.  Modulation waveform under different working conditions

    图  7  实际功耗和检测值的线性拟合

    Figure  7.  Linear fitting of actual values and detected values

    表  1  不同频率下功耗检测误差分析

    Table  1.   Error analysis of power consumption detection at different frequencies

    frequency
    ${f_{\mathrm{s}}}$/kHz
    maximum relative
    error ${\delta _{\max }}$/%
    mean square
    error (MSE)
    linear fit
    ${R^2}$
    75 −2.78 0.314 0.9965
    100 −2.64 0.237 0.9987
    125 −3.04 0.403 0.9788
    150 −3.26 0.491 0.9617
    175 −4.43 0.515 0.9478
    下载: 导出CSV

    表  2  采样频率为100 kHz时对应的实验数据

    Table  2.   Experimental data corresponding to a sampling frequency of 100 kHz

    drain current $ \text{ }{i}_{{\mathrm{d}}} $/A drain source voltage $ \text{ }{v}_{{\mathrm{ds}}} $/V true value ${P_{\mathrm{r}}}$/W analog output ${V_{\mathrm{a}}}$/V detected value P/W relative error $\delta $/%
    1 18.98 18.98 0.298 18.48 −2.64
    2 14.96 29.92 0.476 29.44 −1.60
    3 12.28 36.84 0.598 37.02 0.48
    4 11.02 44.08 0.717 44.41 0.76
    5 9.84 49.20 0.804 49.78 1.19
    6 9.02 54.12 0.885 54.77 1.20
    7 8.26 57.82 0.939 58.11 0.50
    8 7.62 60.96 0.987 61.13 0.28
    9 7.10 63.90 1.027 63.58 −0.50
    10 6.54 65.40 1.043 64.57 −1.27
    11 6.16 67.76 1.091 67.52 −0.35
    12 5.68 68.16 1.084 67.11 −1.54
    13 5.18 67.34 1.078 66.77 −0.85
    14 4.72 66.08 1.069 66.18 0.15
    15 4.36 65.40 1.070 66.22 1.26
    16 4.06 64.96 1.045 64.67 −0.44
    17 3.64 61.88 0.997 61.70 −0.29
    18 3.26 58.68 0.943 58.36 −0.55
    19 2.84 53.96 0.869 53.81 −0.28
    20 2.34 46.80 0.753 46.59 −0.44
    下载: 导出CSV
  • [1] 余俊宏, 郭林辉, 王昭, 等. 200 W级高亮度半导体激光器光纤耦合模块[J]. 强激光与粒子束, 2014, 26:111001 doi: 10.3788/HPLPB20142611.111001

    Yu Junhong, Guo Linhui, Wang Zhao, et al. High brightness fiber coupled diode laser module with 200 W class output power[J]. High Power Laser and Particle Beams, 2014, 26: 111001 doi: 10.3788/HPLPB20142611.111001
    [2] 沈晓红, 曾盈莹, 毛琳, 等. 双波长自锁模半导体薄片激光器[J]. 物理学报, 2022, 71:204202 doi: 10.7498/aps.71.20220483

    Shen Xiaohong, Zeng Yingying, Mao Lin, et al. Dual-wavelength self-mode-locked semiconductor disk laser[J]. Acta Physica Sinica, 2022, 71: 204202 doi: 10.7498/aps.71.20220483
    [3] 田亚玲, 李创社, 张朝阳. 高精度和高稳定性半导体激光器恒流驱动电源[J]. 西安交通大学学报, 2019, 53(3):1-5

    Tian Yaling, Li Chuangshe, Zhang Zhaoyang. High-accuracy and high-stability constant current power for semiconductor lasers[J]. Journal of Xi'an Jiaotong University, 2019, 53(3): 1-5
    [4] 张龙, 陈建生, 高静, 等. 大功率半导体激光器驱动电源及温控系统设计[J]. 红外与激光工程, 2018, 47:1005003 doi: 10.3788/IRLA201847.1005003

    Zhang Long, Chen Jiansheng, Gao Jing, et al. Design of driving power and temperature control system for high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47: 1005003 doi: 10.3788/IRLA201847.1005003
    [5] Zhu Xueli, Zhang Donglai, Gao Wei. Online noninvasive technique for condition monitoring of capacitor in linear power supplies[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8761-8773. doi: 10.1109/TPEL.2021.3057593
    [6] 熊刚, 王伟平. 一种开关线性复合电源及控制策略[J]. 电子测试, 2021(19):18-20,17

    Xiong Gang, Wang Weiping. A switch linearity hybrid power supply and its control strategy[J]. Electronic Test, 2021(19): 18-20,17
    [7] Ebadi M, Abbasi N, Maghsoudi H. A fast and cost-effective short circuit protection scheme for low-power converters for small-scale photovoltaic application[J]. Circuit World, 2022, 48(3): 366-376. doi: 10.1108/CW-11-2021-0281
    [8] 许迪迪, 张小玲, 齐浩淳, 等. 功率MOSFET器件安全工作区的研究[J]. 电力电子技术, 2018, 52(8):70-72

    Xu Didi, Zhang Xiaoling, Qi Haochun, et al. Research on safe operating area of power MOSFET devices[J]. Power Electronics, 2018, 52(8): 70-72
    [9] 饶俊峰, 曾彤, 李孜, 等. 固态Marx发生器的过流保护研究[J]. 强激光与粒子束, 2019, 31:125001 doi: 10.11884/HPLPB201931.190138

    Rao Junfeng, Zeng Tong, Li Zi, et al. Study on over-current protection of solid-state Marx generators[J]. High Power Laser and Particle Beams, 2019, 31: 125001 doi: 10.11884/HPLPB201931.190138
    [10] 刘平, 刘叶春, 苗轶如. 基于瞬时功耗检测的SiC MOSFET短路保护策略[J]. 固体电子学研究与进展, 2022, 42(4):263-268,280

    Liu Ping, Liu Yechun, Miao Yiru. Short circuit protection strategy of SiC MOSFET based on instantaneous power detection[J]. Research & Progress of SSE, 2022, 42(4): 263-268,280
    [11] 李杰, 陈庆奎. 基于蓝牙4.0的GPU集群功耗测量系统设计[J]. 电子检测与仪器学报, 2014, 28(3):314-319

    Li Jie, Chen Qingkui. Design of GPU cluster power consumption measurement system based on Bluetooth 4.0[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(3): 314-319
    [12] 文阳. SiC MOSFET模块驱动保护电路研究[D]. 西安: 西安理工大学, 2020: 69-79

    Wen Yang. Study on SiC MOSFET module drive and protection circuit[D]. Xi’an: Xi’an University of Technology, 2020: 69-79
    [13] 刘增水, 陈瑜迪. 二阶低通滤波器仿真分析及其应用[J]. 电子设计工程, 2019, 27(16):180-184

    Liu Zengshui, Chen Yudi. Simulation analysis and application of second-order low-pass filter[J]. Electronic Design Engineering, 2019, 27(16): 180-184
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  56
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-11-07
  • 录用日期:  2023-10-20
  • 网络出版日期:  2023-11-18
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回