留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

7075铝合金的Fe11+离子辐照损伤研究

郭义盼 苏洋帆 张同林 常浩刚 王溪源

郭义盼, 苏洋帆, 张同林, 等. 7075铝合金的Fe11+离子辐照损伤研究[J]. 强激光与粒子束, 2023, 35: 104003. doi: 10.11884/HPLPB202335.230154
引用本文: 郭义盼, 苏洋帆, 张同林, 等. 7075铝合金的Fe11+离子辐照损伤研究[J]. 强激光与粒子束, 2023, 35: 104003. doi: 10.11884/HPLPB202335.230154
Guo Yipan, Su Yangfan, Zhang Tonglin, et al. Study on Fe11+ ion irradiation damage of 7075 aluminum alloy[J]. High Power Laser and Particle Beams, 2023, 35: 104003. doi: 10.11884/HPLPB202335.230154
Citation: Guo Yipan, Su Yangfan, Zhang Tonglin, et al. Study on Fe11+ ion irradiation damage of 7075 aluminum alloy[J]. High Power Laser and Particle Beams, 2023, 35: 104003. doi: 10.11884/HPLPB202335.230154

7075铝合金的Fe11+离子辐照损伤研究

doi: 10.11884/HPLPB202335.230154
基金项目: 南京航空航天大学工业和信息化部重点实验室开放课题(NJ2022025-7);中央高校基本科研业务费专项资金项目(NJ2022025)
详细信息
    作者简介:

    郭义盼,guoyipan@nuaa.edu.cn

  • 中图分类号: O77+4;TG139+.4;O483

Study on Fe11+ ion irradiation damage of 7075 aluminum alloy

  • 摘要: 7075铝合金因其优异的各项性能,作为结构部件,广泛应用于航天领域中。航天器空间环境中存在各种辐射粒子,这些粒子会对航天器材料产生不同程度的辐照损伤,对其可靠性构成了巨大的威胁,甚至会导致航天任务失败。通过选取不同剂量下3 MeV的Fe11+离子辐照7075铝合金,采用XRD、AFM和纳米压痕等测试手段对7075铝合金的辐照损伤进行了研究,分析了辐照前后7075铝合金的微观组织、表面形貌和硬度的变化。结果显示,离子辐照后的7075铝合金未形成新的相,且结构保持完整,表明其具有一定的抗辐照性能。同时,观察表面发现了由级联碰撞演化及表面缺陷扩散导致的山峰状突起,且样品表面粗糙度和突起的分布密度随剂量增加呈先增加后减小的趋势。另外,纳米压痕测试表明,辐照后样品硬度增加,且随剂量增加,硬度逐渐趋于饱和,经分析可知,样品产生辐照硬化是由于辐照缺陷阻碍了位错的滑移导致。
  • 图  1  空白样和辐照后的7075铝合金样品XRD图谱

    Figure  1.  XRD patterns of 7075 aluminum alloy sample(blank and after irradiation)

    图  2  空白样品与辐照后的样品的三维形貌图像

    Figure  2.  Three-dimensional topography images of sample before and after irradiation

    图  3  空白样品与辐照后样品的粗糙度变化

    Figure  3.  Changes in the roughness of the samplebefore and after irradiation

    图  4  辐照剂量不同样品纳米硬度与压入深度的关系

    Figure  4.  Relationship between nanohardness and indentation depth of different samples with different irradiation doses

    图  5  离子辐照前后样品的H2-1/h关系曲线

    Figure  5.  H2-1/h relationship curve of samplesbefore and after ion irradiation

    图  6  离子辐照前后7075铝合金硬化H0与辐照损伤的关系

    Figure  6.  Relationship between 7075 aluminum alloy hardened H0 and irradiation damage before and after ion irradiation

    表  1  7075铝合金样品化学成分表

    Table  1.   Chemical composition table of 7075 aluminum alloy sample

    ingredient element mass fraction/%
    Al 93.59
    Zn 2.36
    Mg 2.89
    Cu 0.66
    Si 0.50
    下载: 导出CSV

    表  2  Nix-Gao模型计算的不同辐照剂量下样品硬度值

    Table  2.   Nix-GAO model calculated hardness value of the sample irradiated at different irradiation doses

    irradiation damage/dpa H0/GPa H0/GPa hardening ratio η/%
    unirradiated 2.24
    0.16 2.35 0.11 4.90
    0.78 2.38 0.14 6.25
    1.60 2.44 0.20 8.93
    7.80 2.56 0.32 14.3
    注:$\text{Δ}{H}_{\text{0} }\text{=}{H}_{\text{0} }^{\text{irr} }\text{−}{H}_{\text{0} }^{\text{unirr} },$$\eta { = }\dfrac{ { {\Delta }{H_{0} } } }{ {H_{0}^{ \text{iunirr} } } } \times {100{\text{%} } }$
    下载: 导出CSV
  • [1] 王惠芬, 杨碧琦, 刘刚. 航天器结构材料的应用现状与未来展望[J]. 材料导报, 2018, 32(S1):395-399

    Wang Huifen, Yang Biqi, Liu Gang. Application status and future prospect of materials for spacecraft structures[J]. Materials Review, 2018, 32(S1): 395-399.
    [2] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337. doi: 10.1007/s11661-012-1155-z
    [3] Yeganefar A, Niknam S A, Songmene V. Machinability study of aircraft series aluminium alloys 7075-T6 and 7050-T7451[J]. Transactions of the Canadian Society for Mechanical Engineering, 2020, 44(3): 427-439. doi: 10.1139/tcsme-2019-0215
    [4] Hu Yuting, Li Shuncai, Yu Qiu, et al. Investigation of tensile and compressive mechanical properties of typical aerospace alloy materials[J]. Transactions of the Canadian Society for Mechanical Engineering, 2021, 45(4): 612-625. doi: 10.1139/tcsme-2020-0207
    [5] Sivaraman P, Prabhu M K, Nithyanandhan T, et al. Development of aluminum based AA 2014 and AA 7075 dissimilar metals for aerospace applications[J]. Materials Today: Proceedings, 2021, 37: 522-526. doi: 10.1016/j.matpr.2020.05.486
    [6] Ramkumar K R, Sivasankaran S, Al-Mufadi F A, et al. Investigations on microstructure, mechanical, and tribological behaviour of AA 7075- xwt.% TiC composites for aerospace applications[J]. Archives of Civil and Mechanical Engineering, 2019, 19(2): 428-438. doi: 10.1016/j.acme.2018.12.003
    [7] Ma Kaka, Wen Haiming, Hu Tao, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. doi: 10.1016/j.actamat.2013.09.042
    [8] 王长河. 单粒子效应对卫星空间运行可靠性影响[J]. 半导体情报, 1998, 35(1):1-8

    Wang Changhe. The influence with reliability of motional satellite by the single-event phenomena[J]. Semiconductor Intelligence, 1998, 35(1): 1-8.
    [9] Oksengendler B L, Maksimov S E, Turaeva N N, et al. Synergetic theory of catastrophic failures in the problem of radiation stability of solid-state electronics materials[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 326: 45-47.
    [10] 王佩. 单粒子效应电路模拟方法研究[D]. 成都: 电子科技大学, 2010: 12

    Wang Pei. Research on simulation methods of single-particle effect circuits[D]. Chengdu: University of Electronic Science and Technology of China, 2010: 12.
    [11] Ni Kai, Ma Qian, Wan Hao, et al. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys[J]. Materials Research Express, 2018, 5: 026514. doi: 10.1088/2053-1591/aaaca5
    [12] Serventi A M, Antisari M V, Guzman L, et al. Microstructure and mechanical properties of a N+ implanted Al alloy[J]. Philosophical Magazine B, 1997, 76(4): 549-557. doi: 10.1080/01418639708241121
    [13] Soria S R, Tolley A J, Sánchez E A. Defects induced by helium ion irradiation in aluminum alloys[J]. Procedia Materials Science, 2015, 8: 486-493. doi: 10.1016/j.mspro.2015.04.100
    [14] Wan Hao, Si Naichao, Wang Quan, et al. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy[J]. Materials Research Express, 2018, 5: 026501. doi: 10.1088/2053-1591/aaa915
    [15] Do S C, Kim K W, Jeong J H. The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation[J]. Heat and Mass Transfer, 2015, 51(4): 487-495. doi: 10.1007/s00231-014-1424-z
    [16] Soria S R, Tolley A, Sánchez E A. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys[J]. Journal of Nuclear Materials, 2015, 467: 357-367. doi: 10.1016/j.jnucmat.2015.09.051
    [17] 史全岐, 张江, 乐超, 等. 地月空间粒子辐射环境及其对月表物质的影响研究进展[J]. 地球物理学报, 2023, 66(7):2685-2702

    Shi Quanqi, Zhang Jiang, Le Chao, et al. Review of particle radiation environment of the Earth-Moon space and its impact on Lunar surficial material generation[J]. Chinese Journal of Geophysics, 2023, 66(7): 2685-2702.
    [18] 方美华. 深空辐射粒子在介质材料中的输运及损伤研究[D]. 南京: 南京航空航天大学, 2011

    Fang Meihua. Study on deep space radiation transport and radiation damage in materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
    [19] Ziegler J F, Ziegler M D, Biersack J P. SRIM – The stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823.
    [20] Egeland G W, Valdez J A, Maloy S A, et al. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption[J]. Journal of Nuclear Materials, 2013, 435(1/3): 77-87.
    [21] Hapsari S, Sujitno T, Ahmadi H, et al. Analysis of nitrogen ion implantation on the corrosion resistance and mechanical properties of aluminum alloy 7075[J]. Journal of Physics: Conference Series, 2020, 1436: 012075. doi: 10.1088/1742-6596/1436/1/012075
    [22] 张小楠. Fe、Ni基金属玻璃的离子辐照损伤研究[D]. 大连: 大连理工大学, 2019

    Zhang Xiaonan. Ion irradiation damage study of Fe and Ni-based metallic glass[D]. Dalian: Dalian University of Technology, 2019.
    [23] Kasada R, Takayama Y, Yabuuchi K, et al. A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by Nano-indentation techniques[J]. Fusion Engineering and Design, 2011, 86(9/11): 2658-2661.
    [24] Nix W D, Gao Huajian. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425. doi: 10.1016/S0022-5096(97)00086-0
    [25] 闫占峰, 郑健, 周韦, 等. 6061-Al合金的自离子辐照损伤效应[J]. 强激光与粒子束, 2022, 34:056008 doi: 10.11884/HPLPB202234.210509

    Yan Zhanfeng, Zheng Jian, Zhou Wei, et al. The self-ion irradiation effects in 6061-Al alloy[J]. High Power Laser and Particle Beams, 2022, 34: 056008. doi: 10.11884/HPLPB202234.210509
    [26] 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007: 239-241

    Yu Jinnan. Material irradiation effect[M]. Beijing: Chemical Industry Press, 2007: 239-241.
    [27] Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals[J]. Journal of Nuclear Materials, 2000, 276(1/3): 65-77.
    [28] Osetsky Y N, Bacon D J. Atomic-scale modelling of primary damage and properties of radiation defects in metals[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 202: 31-43.
    [29] 范嘉琪, 杨义涛, 丁兆楠, 等. 两种国产低活化的铁素体/马氏体钢的He离子辐照硬化研究[J]. 原子核物理评论, 2017, 34(2):219-225

    Fan Jiaqi, Yang Yitao, Ding Zhaonan, et al. Helium-implantation induced hardening of two low-activation ferritic/martensitic steels of China[J]. Nuclear Physics Review, 2017, 34(2): 219-225.
    [30] 丁兆楠, 杨义涛, 宋银, 等. 高能重离子辐照的低活化钢硬化效应[J]. 物理学报, 2017, 66:112501 doi: 10.7498/aps.66.112501

    Ding Zhaonan, Yang Yitao, Song Yin, et al. Hardening of reduced activation ferritic/martensitic steels under the irradiation of high-energy heavy-ion[J]. Acta Physica Sinica, 2017, 66: 112501. doi: 10.7498/aps.66.112501
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  56
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-09-17
  • 录用日期:  2023-09-05
  • 网络出版日期:  2023-09-23
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回