留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X光弯晶成像金属薄膜面密度测量技术

司昊轩 许昊 杜慧瑶 伊圣振 王占山

司昊轩, 许昊, 杜慧瑶, 等. X光弯晶成像金属薄膜面密度测量技术[J]. 强激光与粒子束, 2023, 35: 112001. doi: 10.11884/HPLPB202335.230161
引用本文: 司昊轩, 许昊, 杜慧瑶, 等. X光弯晶成像金属薄膜面密度测量技术[J]. 强激光与粒子束, 2023, 35: 112001. doi: 10.11884/HPLPB202335.230161
Si Haoxuan, Xu Hao, Du Huiyao, et al. Areal density measurement technology for metal foils based on X-ray bent crystal imaging[J]. High Power Laser and Particle Beams, 2023, 35: 112001. doi: 10.11884/HPLPB202335.230161
Citation: Si Haoxuan, Xu Hao, Du Huiyao, et al. Areal density measurement technology for metal foils based on X-ray bent crystal imaging[J]. High Power Laser and Particle Beams, 2023, 35: 112001. doi: 10.11884/HPLPB202335.230161

X光弯晶成像金属薄膜面密度测量技术

doi: 10.11884/HPLPB202335.230161
基金项目: 国家自然科学基金项目(11875202); 国家重点研发计划项目(2019YFE03080200)
详细信息
    作者简介:

    司昊轩,2130969@tongji.edu.cn

    通讯作者:

    伊圣振, 15006@tongji.edu.cn

    王占山, wangzs@tongji.edu.cn

  • 中图分类号: O434.1

Areal density measurement technology for metal foils based on X-ray bent crystal imaging

  • 摘要: 针对靶用高Z金属薄膜的无损检测需求,提出了一种通过超环面弯晶聚焦型X光单能成像器件,实现金属薄膜均匀性及面密度等参数精确标定的测量技术。该技术即通过高通量、高单能性成像,定量获取薄膜X光透过率及其空间分布,有效提升了面密度测量的精度,同时实现了对其均匀性的高空间分辨评估。从总体方案设计、元器件制备和测试实验等方面开展了深入研究,并评估了各种可能因素对测量不确定度的影响。所发展的超环面弯晶成像系统针对20 keV级的高能X射线在mm尺度内实现了优于5 μm的微区分辨,能谱分辨达到几eV。通过泡沫金样品面密度测量实验证明了技术可行性,相对不确定度优于2%。研究结果为激光惯性约束聚变高Z靶材料的精密无损检测提供了一种新的测量技术,并有望应用于其他需要大视场、高空谱分辨成像的需求领域。
  • 图  1  超环面弯晶面密度测量方案图

    Figure  1.  Scheme diagram of the toroidal crystal to measure areal density

    图  2  Ge $\left\langle 511 \right\rangle $ 超环面弯晶对600目金网的成像结果

    Figure  2.  Image of a 600-mesh gold mesh by Ge $\left\langle 511 \right\rangle $ toroidal crystal

    图  3  X-ray Tracer模拟Ge $\left\langle 511 \right\rangle $ 超环面弯晶的成像及能谱分辨

    Figure  3.  X-ray Tracer simulated imaging and spectroscopic resolution of Ge $\left\langle 511 \right\rangle $ toroidal crystal

    图  4  超环面弯晶测量泡沫金面密度的实验排布

    Figure  4.  Experimental arrangement of toroidal crystal for measuring the areal density of foam gold

    图  5  超环面弯晶泡沫金面密度测量结果

    Figure  5.  Results of areal density measurement of foam gold in toroidal crystal

    图  6  面密度测量不确定度来源及分类

    Figure  6.  Sources and classification of uncertainty of areal density measurement

    表  1  Ge $\left\langle 511 \right\rangle $ 超环面弯晶系统光学结构参数

    Table  1.   Optical structure parameters of toroidal crystal system for Ge $\left\langle 511 \right\rangle $

    crystal material crystal orientation θ/(°) Rm/mm Rs/mm object distance/mm image distance/mm
    Ge $\left\langle 511 \right\rangle $ 77.74 300 286.5 171.01 1 026.05
    下载: 导出CSV

    表  2  Ge $\left\langle 511 \right\rangle $ 测量泡沫金样品面密度

    Table  2.   Ge $\left\langle 511 \right\rangle $ measurement of surface density of foam gold sample

    No. image coordinates/mm direct light count (I0) transmitted light count (I) transmissivity/% areal density/(mg/cm2) thickness/μm
    P_1 (409,276) 3 309 600 18.132 15.856 8.207
    P_2 (432,274) 3 003 590 19.647 15.108 7.820
    P_3 (441,281) 2 871 554 19.296 15.290 7.914
    P_4 (415,298) 3 433 609 17.740 16.055 8.310
    P_5 (436,297) 3 523 624 17.712 16.072 8.319
    P_6 (395,313) 3 450 647 18.754 15.547 8.047
    P_7 (427,324) 3 599 613 17.033 16.432 8.505
    P_8 (403,326) 3 366 594 17.647 16.107 8.337
    下载: 导出CSV
  • [1] 唐永建, 张林, 吴卫东, 等. ICF靶材料和靶制备技术研究进展[J]. 强激光与粒子束, 2008, 20(11):1773-1786

    Tang Yongjian, Zhang Lin, Wu Weidong, et al. Research progress on ICF target materials and target fabrication technology[J]. High Power Laser and Particle Beams, 2008, 20(11): 1773-1786
    [2] 高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32:032001 doi: 10.11884/HPLPB202032.200039

    Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039
    [3] Rong Chunming, He X, Meng J, et al. Nuclear microbeam analysis of ICF target material made by GDP technique[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 348: 178-182.
    [4] Dong Yalun, Yang Lihong, Jin Ziqi, et al. Experimental and numerical analysis of ballistic impact response of fiber-reinforced composite/metal composite target[J]. Composite Structures, 2022, 294: 115776. doi: 10.1016/j.compstruct.2022.115776
    [5] Stoner J O Jr, Borgardt J, Ashbaugh M D, et al. Areal-density measurement of 12C and 13C foils and layers using the (3He, p) nuclear reaction[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 480(1): 133-136.
    [6] Fukuchi T, Yamamoto S, Kataoka J, et al. Beta-ray imaging system with γ-ray coincidence for multiple-tracer imaging[J]. Medical Physics, 2020, 47(2): 587-596. doi: 10.1002/mp.13947
    [7] Ashworth C. Boosting β-ray detection[J]. Nature Reviews Materials, 2020, 5: 640. doi: 10.1038/s41578-020-0231-z
    [8] Yi Shengzhen, Si Haoxuan, Jiang Li, et al. Optical and multilayer design of two-energy sixteen-channel Kirkpatrick-Baez microscope for ultrafast plasma diagnostics[C]//Proceedings of SPIE 11909, Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves. 2021: 11909S.
    [9] 伊圣振, 司昊轩, 黄秋实, 等. 激光惯性约束聚变X射线诊断用多通道Kirkpatrick-Baez成像系统研究进展[J]. 光学学报, 2022, 42:1134007

    Yi Shengzhen, Si Haoxuan, Huang Qiushi, et al. Research progress of multi-channel Kirkpatrick-Baez microscope for X-ray diagnostics in laser inertial confinement fusion[J]. Acta Optica Sinica, 2022, 42: 1134007
    [10] Yi Shengzhen, Si Haoxuan, Fang Ke, et al. High-resolution dual-energy sixteen-channel Kirkpatrick-Baez microscope for ultrafast laser plasma diagnostics[J]. Journal of the Optical Society of America B, 2022, 39(3): A61-A67. doi: 10.1364/JOSAB.444438
    [11] Si Haoxuan, Dong Jiaqin, Fang Zhiheng, et al. High-resolution X-ray monochromatic imaging for laser plasma diagnostics based on toroidal crystal[J]. Plasma Science and Technology, 2023, 25: 015601.
    [12] Mamouei M, Budidha K, Baishya N, et al. An empirical investigation of deviations from the Beer-Lambert law in optical estimation of lactate[J]. Scientific Reports, 2021, 11: 13734. doi: 10.1038/s41598-021-92850-4
    [13] Linstrom P J, Mallard W G. NIST chemistry WebBook[D/OL]. Gaithersburg: National Institute of Standards and Technology, 2020[2023-04-07]. https://webbook.nist.gov/chemistry/.
    [14] Jiang Chenglong, Xu Jie, Mu Baozhong, et al. Four-channel toroidal crystal X-ray imager for laser-produced plasmas[J]. Optics Express, 2021, 29(4): 6133-6146. doi: 10.1364/OE.415537
    [15] 姚童, 黎淼, 施军, 等. 钛靶X射线超环面晶体衍射高分辨率聚焦诊断技术研究[J]. 中国激光, 2021, 48:2103002 doi: 10.3788/CJL202148.2103002

    Yao Tong, Li Miao, Shi Jun, et al. High-resolution focusing diagnosis technology on Ti-target X-ray diffraction using toroidal crystals[J]. Chinese Journal of Lasers, 2021, 48: 2103002 doi: 10.3788/CJL202148.2103002
    [16] Schollmeier M S, Loisel G P. Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources[J]. Review of Scientific Instruments, 2016, 87: 123511. doi: 10.1063/1.4972248
    [17] Klementiev K, Chernikov R. Powerful scriptable ray tracing package XRT[C]//Proceedings of SPIE 9209, Advances in Computational Methods for X-Ray Optics III. 2014: 92090A.
    [18] JJF 1059.1-2012, 测量不确定度评定与表示[S

    JJF1059.1-2012, Evaluation and expression of uncertaintv in measurement[S
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  62
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-10-11
  • 录用日期:  2023-10-11
  • 网络出版日期:  2023-10-19
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回