留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成超表面模式转换的全光纤柱矢量MOPA激光器

刘世鑫 彭万敬 冯昱俊 刘航 施鑫磊 孙殷宏 马毅 赵智刚 高清松 刘兆军 唐淳

刘世鑫, 彭万敬, 冯昱俊, 等. 集成超表面模式转换的全光纤柱矢量MOPA激光器[J]. 强激光与粒子束, 2023, 35: 101003. doi: 10.11884/HPLPB202335.230166
引用本文: 刘世鑫, 彭万敬, 冯昱俊, 等. 集成超表面模式转换的全光纤柱矢量MOPA激光器[J]. 强激光与粒子束, 2023, 35: 101003. doi: 10.11884/HPLPB202335.230166
Liu Shixin, Peng Wanjing, Feng Yujun, et al. All-fiber cylindrical vector beam MOPA laser based on integrated metasurface mode convertor[J]. High Power Laser and Particle Beams, 2023, 35: 101003. doi: 10.11884/HPLPB202335.230166
Citation: Liu Shixin, Peng Wanjing, Feng Yujun, et al. All-fiber cylindrical vector beam MOPA laser based on integrated metasurface mode convertor[J]. High Power Laser and Particle Beams, 2023, 35: 101003. doi: 10.11884/HPLPB202335.230166

集成超表面模式转换的全光纤柱矢量MOPA激光器

doi: 10.11884/HPLPB202335.230166
详细信息
    作者简介:

    刘世鑫,15615834335@163.com

    通讯作者:

    彭万敬,wanjing.p@163.com

  • 中图分类号: TN248.1

All-fiber cylindrical vector beam MOPA laser based on integrated metasurface mode convertor

  • 摘要: 柱矢量光束因其独特的偏振分布特性而在光镊、高分辨率成像、遥感、等离子体聚焦等领域发挥着重要作用。为实现全光纤高功率柱矢量MOPA激光器,采用自主设计基于集成超表面的模式转换光纤器件,进行了理论分析与实验验证。自主设计集成超表面的模式转换光纤器件可直接稳定输出数瓦功率的径向偏振柱矢量种子光,且输出模式纯度可达95%以上。实验中通过降低弯曲损耗并对模式进行控制,获得了单级放大输出功率为52.2 W的径向偏振柱矢量光稳定输出,且模式光场分布在输出功率增加过程中并未出现明显变化。为进一步分析输出的模式特性,采用旋转检偏器的方法检测输出光的偏振特性及偏振纯度,并利用非相干模式叠加方法计算了输出的径向偏振柱矢量光的模式纯度。结果表明,集成超表面模式转换的全光纤柱矢量MOPA激光器在最大输出功率情况下,输出光的偏振纯度约为95.2%,模式纯度约为94%,验证了该全光纤方案的可行性。
  • 图  1  光纤中所支持模式的光强分布

    Figure  1.  Beam intensity distribution of the supposed mode in the fiber

    图  2  柱矢量弯曲损耗随弯曲半径的变化

    Figure  2.  Curvature loss of cylindrical vector beam as a function of winding radius

    图  3  全光纤柱矢量MOPA激光器结构

    Figure  3.  All fiber cylindrical vector beam MOPA laser system

    图  4  通过检偏器前后的光场强度分布

    Figure  4.  Beam intensity distribution before and after passing through a rotatable polarizer

    图  5  输出功率随泵浦功率的变化图

    Figure  5.  Output power versus pump power

    图  6  通过检偏器前后的光场强度分布

    Figure  6.  Beam intensity distribution with the maximum output power before and after passing through a rotatable polarizer

    图  7  最高输出功率下输出强度随检偏器角度的变化和偏振纯度在放大过程中的变化

    Figure  7.  Polarization purity versus degree of the polarizer analyzer at 52.2 W and variation of polarization purity during amplification

    表  1  光纤参数

    Table  1.   Fiber parameters

    fiber core diameter/μmcladding diameter/μmcladding refractive indexnumerical aperturenormalized frequencylaser wavelength/nm
    204001.450.0643.781064
    下载: 导出CSV
  • [1] 崔祥霞, 陈君, 杨兆华. 径向偏振光研究的最新进展[J]. 激光杂志, 2009, 30(2):7-10 doi: 10.3969/j.issn.0253-2743.2009.02.003

    Cui Xiangxia, Chen Jun, Yang Zhaohua. Research progress on radially polarized beam[J]. Laser Journal, 2009, 30(2): 7-10 doi: 10.3969/j.issn.0253-2743.2009.02.003
    [2] Roy S, Ushakova K, Van Den Berg Q, et al. Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate[J]. Physical Review Letters, 2015, 114: 103903. doi: 10.1103/PhysRevLett.114.103903
    [3] Zhang Chonglei, Wang Rong, Min Changjun, et al. Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor[J]. Applied Physics Letters, 2013, 102: 011114. doi: 10.1063/1.4773997
    [4] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077
    [5] Grosjean T, Courjon D, Spajer M. An all-fiber device for generating radially and other polarized light beams[J]. Optics Communications, 2002, 203(1/2): 1-5.
    [6] Guo Yancheng, Liu Yange, Wang Zhi, et al. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating[J]. Laser Physics Letters, 2018, 15: 085108. doi: 10.1088/1612-202X/aac5c9
    [7] Song Huaqing, Zhao Zhongxiang, Xian Lunlun, et al. A wavelength-tunable narrow-linewidth all-fiber laser with cylindrical vector beam outputs[J]. Optics Communications, 2018, 428: 245-250. doi: 10.1016/j.optcom.2018.07.064
    [8] Sun Biao, Wang Anting, Xu Lixin, et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating[J]. Optics Letters, 2012, 37(4): 464-466. doi: 10.1364/OL.37.000464
    [9] Zhang Jiaojiao, Wan Hongdan, Zhang Lin, et al. All-fiber CW cylindrical vector beam fiber laser based on few-mode fiber Bragg grating[J]. Optik, 2017, 147: 109-114. doi: 10.1016/j.ijleo.2017.08.064
    [10] Wang Jie, Wan Hongdan, Cao Han, et al. A 1- μm cylindrical vector beam fiber ring laser based on a mode selective coupler[J]. IEEE Photonics Technology Letters, 2018, 30(9): 765-768. doi: 10.1109/LPT.2018.2797990
    [11] Zhang Yimin, Tao Runxia, Li Hongxun, et al. Stable generation of cylindrical vector beams with an all-fiber laser using polarization-maintaining and ring-core fibers[J]. Optics Express, 2020, 28(12): 18351-18359. doi: 10.1364/OE.395757
    [12] Liu Xiangzhong, Zhang Yimin, Dong Zhipeng, et al. High-power cylindrical vector beam fiber laser based on an all-polarization-maintaining structure[J]. Optics Express, 2022, 30(15): 27123-27131. doi: 10.1364/OE.463667
    [13] Zhang B M, Feng Yujun, Lin Di, et al. Demonstration of arbitrary temporal shaping of picosecond pulses in a radially polarized Yb-fiber MOPA with > 10 W average power[J]. Optics Express, 2017, 25(13): 15402-15413. doi: 10.1364/OE.25.015402
    [14] Marcuse D. Bend loss of slab and fiber modes computed with diffraction theory[J]. IEEE Journal of Quantum Electronics, 1993, 29(12): 2957-2961. doi: 10.1109/3.259412
    [15] Lin Di, Xia Kegui, Li Jianlang, et al. Efficient, high-power, and radially polarized fiber laser[J]. Optics Letters, 2010, 35(13): 2290-2292. doi: 10.1364/OL.35.002290
    [16] Lin Di, Daniel J M O, Gecevičius M, et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output[J]. Optics Letters, 2014, 39(18): 5359-5361. doi: 10.1364/OL.39.005359
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  106
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 修回日期:  2023-08-22
  • 录用日期:  2023-08-22
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回