留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CRAFT负离子源中性束注入系统400 keV加速器束流光学特性分析

崔庆龙 韦江龙 谢亚红 梁立振 谢远来 胡纯栋

崔庆龙, 韦江龙, 谢亚红, 等. CRAFT负离子源中性束注入系统400 keV加速器束流光学特性分析[J]. 强激光与粒子束, 2023, 35: 114001. doi: 10.11884/HPLPB202335.230179
引用本文: 崔庆龙, 韦江龙, 谢亚红, 等. CRAFT负离子源中性束注入系统400 keV加速器束流光学特性分析[J]. 强激光与粒子束, 2023, 35: 114001. doi: 10.11884/HPLPB202335.230179
Cui Qinglong, Wei Jianglong, Xie Yahong, et al. Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system[J]. High Power Laser and Particle Beams, 2023, 35: 114001. doi: 10.11884/HPLPB202335.230179
Citation: Cui Qinglong, Wei Jianglong, Xie Yahong, et al. Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system[J]. High Power Laser and Particle Beams, 2023, 35: 114001. doi: 10.11884/HPLPB202335.230179

CRAFT负离子源中性束注入系统400 keV加速器束流光学特性分析

doi: 10.11884/HPLPB202335.230179
基金项目: 国家重大科技基础设施项目 (2018-000052-73-01-001228);国家自然科学基金项目(11975264)
详细信息
    作者简介:

    崔庆龙,qlcui@ipp.ac.cn

    通讯作者:

    韦江龙, jlwei@ipp.ac.cn

  • 中图分类号: TL62+9.1

Beamlet optics analysis of 400 keV accelerator for CRAFT negative ion based neutral beam injection system

  • 摘要: 负离子源中性束注入(NNBI)系统是聚变堆主机关键系统综合研究设施(CRAFT)的组成部分,其目标是开展NNBI相关的科学与工程问题研究,为未来聚变堆NNBI系统的研制与运行积累经验。加速器的束流光学特性决定着最终形成束流的发散性,进而影响着束流在加速器和束线中的传输效率,这对NNBI系统的高功率、高能量、长脉冲运行至关重要。为此,采用IBSimu离子束流模拟程序对目前CRAFT NNBI的400 keV加速器电极系统的物理设计进行束流光学特性分析与评估。目前该套电极结构的设计与ITER负离子源类似,束发散的计算结果满足设计要求。在负离子束流密度较高时(100~300 A/m2范围内),具有更小束发散角;引出距离(5~7 mm范围内)和加速距离(88~110 mm范围内)的适当增加,也呈现出束发散角下降趋势。
  • 图  1  IBSimu程序数值模拟的基本流程图

    Figure  1.  Basic flow chart of the numerical simulation with IBSimu code

    图  2  CRAFT NNBI负离子源结构图

    Figure  2.  Structure of negative ion source of CRAFT NNBI

    图  3  CRAFT NNBI负离子源电极结构与电压关系

    Figure  3.  Aperture structure and voltage relation of the negative ion source for CRAFT NNBI

    图  4  不同的离子电流密度的负离子(红色)和电子(黄色)引出与加速轨迹

    Figure  4.  Trajectories of negative ions (red line) and electrons (yellow line) during extraction and acceleration under different ion current densities

    图  5  不同引出电流密度下,负离子束流在地电极出口处的发散角特性

    Figure  5.  Characteristics of the beamlet divergence at the GG aperture exit under different extracted current densities

    图  6  不同模拟条件下,负离子束流在地电极出口处的发散角特性

    Figure  6.  Characteristics of the beamlet divergence at the GG aperture exit under different simulation conditions

    图  7  不同的加速间距下,负离子束流在地电极出口处的发散角特性

    Figure  7.  Characteristics of the beamlet divergence at the GG aperture exit under different acceleration gaps

    图  8  不同的引出间距下,负离子束流在地电极出口处的发散角特性

    Figure  8.  Character of the beamlet divergence at the GG aperture exit under different extraction gaps

  • [1] Takeiri Y. Negative ion source development for fusion application (invited)[J]. Review of Scientific Instruments, 2010, 81: 02B114. doi: 10.1063/1.3274806
    [2] Kashiwagi M, Hiratsuka J, Ichikawa M, et al. 100 s negative ion accelerations for the JT–60SA negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2022, 62: 026025. doi: 10.1088/1741-4326/ac388a
    [3] Tsumori K, Ikeda K, Kisaki M, et al. Challenges toward improvement of deuterium-injection power in the Large Helical Device negative-ion-based NBIs[J]. Nuclear Fusion, 2022, 62: 056016. doi: 10.1088/1741-4326/ac2d59
    [4] Hemsworth R S, Boilson D, Blatchford P, et al. Overview of the design of the ITER heating neutral beam injectors[J]. New Journal of Physics, 2017, 19: 025005. doi: 10.1088/1367-2630/19/2/025005
    [5] Xie Yanghong, Hu Chundong, Wei Jianglong, et al. Conceptual design of a beam source for negative neutral beam injector of CRAFT facility[J]. Fusion Engineering and Design, 2021, 167: 112377. doi: 10.1016/j.fusengdes.2021.112377
    [6] Bacal M, Wada M. Negative hydrogen ion production mechanisms[J]. Applied Physics Reviews, 2015, 2: 021305. doi: 10.1063/1.4921298
    [7] Wei Jianglong, Hu Chundong, Xie Yahong, et al. Physics and engineering design of 400 keV H accelerator for negative ion based neutral beam injection system in China[J]. Review of Scientific Instruments, 2019, 90: 113313. doi: 10.1063/1.5128335
    [8] Wei Jianglong, Yang Yuwen, Gu Yuming, et al. An integration design model for a large-scale negative ion accelerator of neutral beam injection system for fusion application[J]. Physics of Plasmas, 2023, 30: 033102. doi: 10.1063/5.0139827
    [9] Brown I G. The physics and technology of ion sources[M]. 2nd ed. Weinhein, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
    [10] Pamela J. A model for negative ion extraction and comparison of negative ion optics calculations to experimental results[J]. Review of Scientific Instruments, 1991, 62(5): 1163-1172. doi: 10.1063/1.1141995
    [11] Becker R. NIGUN: A two-dimensional simulation program for the extraction of H ions[J]. Review of Scientific Instruments, 2004, 75(5): 1723-1725. doi: 10.1063/1.1695610
    [12] Kalvas T, Tarvainen O, Ropponen T, et al. IBSIMU: a three-dimensional simulation software for charged particle optics[J]. Review of Scientific Instruments, 2010, 81: 02B703. doi: 10.1063/1.3258608
    [13] 王惠三, 简广德, 周才品. 高能强流负离子束系统束光学特性的数值模拟[J]. 核聚变与等离子体物理, 2000, 20(2):93-99 doi: 10.3969/j.issn.0254-6086.2000.02.005

    Wang Huisan, Jian Guangde, Zhou Caipin. Numerical simulation of the beam optics characteristics in a high energy and high current negative ion beam system[J]. Nuclear Fusion and Plasma Physics, 2000, 20(2): 93-99 doi: 10.3969/j.issn.0254-6086.2000.02.005
    [14] De Esch H P L, Kashiwagi M, Taniguchi M, et al. Physics design of the HNB accelerator for ITER[J]. Nuclear Fusion, 2015, 55: 096001. doi: 10.1088/0029-5515/55/9/096001
    [15] Agostinetti P, Aprile D, Antoni V, et al. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI[J]. Nuclear Fusion, 2016, 56: 016015. doi: 10.1088/0029-5515/56/1/016015
    [16] Wimmer C, Schiesko L, Fantz U. Investigation of the boundary layer during the transition from volume to surface dominated H production at the BATMAN test facility[J]. Review of Scientific Instruments, 2016, 87: 02B310. doi: 10.1063/1.4932985
    [17] Kisaki M, Tsumori K, Ikeda K, et al. Characteristics of plasma grid bias in large-scaled negative ion source[J]. Review of Scientific Instruments, 2014, 85: 02B131. doi: 10.1063/1.4854295
    [18] Kojima A, Hanada M, Tanaka Y, et al. Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2011, 51: 083049. doi: 10.1088/0029-5515/51/8/083049
  • 加载中
图(8)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  116
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-10-16
  • 录用日期:  2023-10-16
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回