留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于5G移动设备的双频双圆极化毫米波天线设计

杨旋 姚代波 杨承坤 郭庆功

杨旋, 姚代波, 杨承坤, 等. 用于5G移动设备的双频双圆极化毫米波天线设计[J]. 强激光与粒子束, 2023, 35: 103003. doi: 10.11884/HPLPB202335.230216
引用本文: 杨旋, 姚代波, 杨承坤, 等. 用于5G移动设备的双频双圆极化毫米波天线设计[J]. 强激光与粒子束, 2023, 35: 103003. doi: 10.11884/HPLPB202335.230216
Yang Xuan, Yao Daibo, Yang Chengkun, et al. Design of broadband dual-band dual circularly polarized millimeter wave antenna for 5G mobile devices[J]. High Power Laser and Particle Beams, 2023, 35: 103003. doi: 10.11884/HPLPB202335.230216
Citation: Yang Xuan, Yao Daibo, Yang Chengkun, et al. Design of broadband dual-band dual circularly polarized millimeter wave antenna for 5G mobile devices[J]. High Power Laser and Particle Beams, 2023, 35: 103003. doi: 10.11884/HPLPB202335.230216

用于5G移动设备的双频双圆极化毫米波天线设计

doi: 10.11884/HPLPB202335.230216
基金项目: 国家自然科学基金项目(U19A2054)
详细信息
    作者简介:

    杨 旋,abc15237979332@163.com

    通讯作者:

    郭庆功,guoqingong@scu.edu.cn

  • 中图分类号: TN827.4

Design of broadband dual-band dual circularly polarized millimeter wave antenna for 5G mobile devices

  • 摘要: 设计实现了一种宽带双频双圆极化的毫米波单馈天线,天线同时在n257(26.5~29.5 GHz)、n260(37.0~40.0 GHz)波段工作。与传统的圆极化天线相比,天线采用上下堆叠的不规则贴片实现了双频双圆极化,提高了信号收发隔离度;通过增加弯曲的寄生贴片,天线拓展了圆极化轴比带宽;金属边框上的矩形缝隙用来改善天线增益和带宽。测试结果表明,天线低频和高频的相对阻抗(<−10 dB)带宽分别达到20.4%和17.0%,相对轴比(<3 dB)带宽分别达到14.9%和11.4%。天线带宽覆盖n257、n260波段,可以用于5G移动设备与低轨卫星的通信。
  • 图  1  天线演变过程

    Figure  1.  Evolution of antenna

    图  2  天线演变对轴比带宽的影响

    Figure  2.  Effect of antenna evolution on axial ratio bandwidth (AR BW)

    图  3  天线单元

    Figure  3.  Antenna element

    图  4  28 GHz处上层贴片电场分布图

    Figure  4.  Electric field distribution of the upper patch at 28 GHz

    图  5  38 GHz处下层贴片电场分布图

    Figure  5.  Electric field distribution of the lower patch at 38 GHz

    图  6  天线集成边框结构图

    Figure  6.  Structure of the antenna integrated frame

    图  7  天线加工样品图片

    Figure  7.  Picture of antenna processing sample

    图  8  天线测试场景图片

    Figure  8.  Picture of antenna test scenario

    图  9  驻波比的仿真与测试图

    Figure  9.  Simulated and measured VSWR

    图  10  轴比带宽的仿真与测试图

    Figure  10.  Simulated and measured AR BW

    图  11  28 GHz增益仿真与测试图

    Figure  11.  The simulated and measured gain at 28 GHz

    图  12  38 GHz增益仿真与测试图

    Figure  12.  Simulated and measured gain at 38 GHz

    图  13  28 GHz交叉极化仿真与测试图

    Figure  13.  Simulated and measured cross polarization at 28 GHz

    图  14  38 GHz交叉极化仿真与测试图

    Figure  14.  Simulated and measured cross polarization at 38 GHz

    表  1  天线单元尺寸参数

    Table  1.   Dimension parameters of antenna (mm)

    H1H2H3W0LyW1W2L1
    0.8131.30.508192.11.71.7
    LxC3C4Lk1WfL2Lf1Lf2
    9.60.92.34.60.51.15.62.6
    C1r1r2Lyout1L0LinxLinyLiny1
    1.20.20.44.85.97.88.68.6
    下载: 导出CSV

    表  2  不同双圆极化天线结果比较

    Table  2.   Comparison of the proposed antenna with the other dual-circular-polarized antennas

    antennasyearoperating frequency/GHzrelative impedance BW/%relative 3 dB AR BW/%relative size/λ0feed mode
    Ref [7]20182.55/6.014.7/28.48.8/4.40.22×0.22single feed
    Ref [8]20192.4/5.220.4/12.616.6/5.70.30×0.32single feed
    Ref [9]20225.15/6.3227.52.7/4.4single feed
    Ref [10]202218.9/28.526.4/24.60.69×0.69reflecting surface
    this work28/3820.4 /17.014.9/11.40.89×0.84single feed
    下载: 导出CSV
  • [1] Zhao Kun, Ying Zhinong, Zhang Shuai, et al. Antenna designs for mobile handsets with consideration of 3GPP requirements in FR2[C]//2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). 2021: 343-344.
    [2] Zhang Junkai, Garg N, Holm M, et al. Design of full duplex millimeter-wave integrated access and backhaul networks[J]. IEEE Wireless Communications, 2021, 28(1): 60-67. doi: 10.1109/MWC.001.2000199
    [3] Chen Kuoming, Pan Yunhan, Lee T S. Low-complexity beam selection for hybrid precoded multi-user mmWave communications[C]//2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). 2018: 1-5.
    [4] Chang Yinchen, Hsu C C, Magray M I, et al. Wideband and low profile miniaturized magneto-electric dipole antenna for 5G mmWave applications[C]//2020 IEEE Asia-Pacific Microwave Conference (APMC). 2020: 697-699,
    [5] Zhao Yang, Liu Zhenyang, Fan Xing, et al. Design of a Ka broadband satellite communication antenna for low-earth-orbit constellation[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-4.
    [6] Chen Shanzhi, Sun Shaohui, Kang Shaoli. System integration of terrestrial mobile communication and satellite communication —the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17(12): 156-171. doi: 10.23919/JCC.2020.12.011
    [7] Ni Chao, Wu Weijun, Liu Qifeng, et al. A novel dual-band dual-sense circularly polarized slot antenna design[C]//2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). 2018: 1-3.
    [8] Kumar P, Dwari S, Saini R K, et al. Dual-band dual-sense polarization reconfigurable circularly polarized antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 64-68. doi: 10.1109/LAWP.2018.2880799
    [9] Zeng Jianping, Guan Fang, Lin Fenghan. Control of characteristic mode excitation for wideband and dual-band circularly polarized U-slot patch antennas[C]//2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). 2022: 229-230.
    [10] Farias R L, Peixeiro C, Heckler M V T. Single-layer dual-band dual-circularly polarized reflectarray for space communication[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5989-5994. doi: 10.1109/TAP.2022.3161552
    [11] Xu Rui, Li J Y, Wei D J, et al. A very simple dual-band dual-sense circularly polarized square slot antenna[C]//2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 2018: 123-124.
    [12] Huang Huanchu, Wang Yijin, Jian Xianjing. Novel integrated design of dual-band dual-polarization mm-wave antennas in non-mm-wave antennas (AiA) for a 5G phone with a metal frame[C]//2019 International Workshop on Antenna Technology (iWAT). 2019: 125-128.
    [13] Yu Bin, Yang Kang, Sim C Y D, et al. A novel 28 GHz beam steering array for 5G mobile device with metallic casing application[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 462-466. doi: 10.1109/TAP.2017.2772084
    [14] Al Abbas E, Ikram M, Mobashsher A T, et al. MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications[J]. IEEE Access, 2019, 7: 181916-181923. doi: 10.1109/ACCESS.2019.2958897
    [15] Ikram M, Al Abbas E, Nguyen-Trong N, et al. Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7225-7233. doi: 10.1109/TAP.2019.2930119
    [16] Ding Yanran, Cheng Yujian. A tri-band shared-aperture antenna for (2.4, 5.2) GHz Wi-Fi application with MIMO function and 60 GHz Wi-Gig application with beam-scanning function[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1973-1981. doi: 10.1109/TAP.2019.2948571
    [17] Biswal S P, Sharma S K, Das S. Collocated microstrip slot MIMO antennas for cellular bands along with 5G phased array antenna for user equipments (UEs)[J]. IEEE Access, 2020, 8: 209138-209152. doi: 10.1109/ACCESS.2020.3038328
    [18] Zada M, Shah I A, Yoo H. Integration of sub-6-GHz and mm-wave bands with a large frequency ratio for future 5G MIMO applications[J]. IEEE Access, 2021, 9: 11241-11251. doi: 10.1109/ACCESS.2021.3051066
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  136
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-11
  • 修回日期:  2023-09-12
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-16
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回