留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯优化的高能质子空间传输精确控制

申诗雨 杨晓虎 张国博 赵子琦 马燕云

申诗雨, 杨晓虎, 张国博, 等. 基于贝叶斯优化的高能质子空间传输精确控制[J]. 强激光与粒子束, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231
引用本文: 申诗雨, 杨晓虎, 张国博, 等. 基于贝叶斯优化的高能质子空间传输精确控制[J]. 强激光与粒子束, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231
Shen Shiyu, Yang Xiaohu, Zhang Guobo, et al. Precise control of high-energy protons transport in space environment by using bayesian optimization[J]. High Power Laser and Particle Beams, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231
Citation: Shen Shiyu, Yang Xiaohu, Zhang Guobo, et al. Precise control of high-energy protons transport in space environment by using bayesian optimization[J]. High Power Laser and Particle Beams, 2023, 35: 104005. doi: 10.11884/HPLPB202335.230231

基于贝叶斯优化的高能质子空间传输精确控制

doi: 10.11884/HPLPB202335.230231
基金项目: 国家自然科学基金项目(12175309、11975308、12005297);中国科学院战略先导专项(XDA25050200);湖南省自然科学基金项目(CX20190001);国防科技大学青年创新奖资助课题(20180104)
详细信息
    作者简介:

    申诗雨,1806823156@qq.com

    通讯作者:

    杨晓虎,xhyang@nudt.edu.cn

  • 中图分类号: O53

Precise control of high-energy protons transport in space environment by using bayesian optimization

  • 摘要: 综合考虑地磁场、高能质子的相对论效应以及同步辐射的影响,建立了质子在空间传输的单粒子运动模型。基于该模型,提出利用贝叶斯优化方法,实现给定质子能量下,质子从空间初始点传输到目标点的精确控制方法,获得了出射方向随出射位置的变化规律,当位置径向角取0°和180°时,位置轴向角的取值不会改变粒子的最优出射方向。研究结果为质子束在空间环境中的长程传输提供理论支撑。
  • 图  1  理论模型与IGRF数据库磁感应强度图

    Figure  1.  Magnetic induction intensity diagram of theoretical model and IGRF database

    图  2  考虑相对论效应和未考虑相对论效应的运动轨迹图

    Figure  2.  Proton trajectory with and without relativistic effect

    图  3  考虑同步辐射和未考虑同步辐射的质子运动轨迹图

    Figure  3.  Proton trajectory with and without synchrotron radiation

    图  4  贝叶斯优化流程图

    Figure  4.  Bayesian optimization flow chart

    图  5  最小距离与出射速度方向关系图

    Figure  5.  Relationship between the minimum distance and the exit velocity direction

    图  6  优化结果示意图

    Figure  6.  Schematic diagram of optimization results

    图  7  最小距离与迭代次数的关系图

    Figure  7.  Variation of min distance and iteration times

    表  1  不同出射位置的最佳出射方向及最小距离

    Table  1.   Optimal emission direction and minimum distance at different emission positions

    coordinate radial angle/(°) coordinate axial angle/(°) radial angle of exit/(°) axial angle of exit/(°) minimum distance from target/m
    0 0 146.34 271.76 2.8
    45 0 126.45 214.08 4.8
    90 0 14.54 259.39 1.9
    135 0 50.89 155.38 1.8
    180 0 33.98 92.10 3.2
    0 90 146.33 271.77 2.8
    45 90 101.28 274.37 3.6
    90 90 56.79 86.26 4.7
    135 90 11.32 284.69 2.9
    180 90 33.99 92.11 3.2
    0 180 146.33 271.77 2.8
    45 180 128.89 334.47 2.7
    90 180 91.02 5.00 3.2
    135 180 54.10 34.93 4.5
    180 180 33.99 92.11 3.2
    0 270 146.33 271.76 2.8
    45 270 168.63 104.92 2.4
    90 270 79.02 94.64 2.6
    135 270 123.92 96.31 3.9
    180 270 33.99 92.11 3.2
    下载: 导出CSV
  • [1] Neubert T, Gilchrist B, Wilderman S, et al. Relativistic electron beam propagation in the Earth's atmosphere: modeling results[J]. Geophysical Research Letters, 1996, 23(9): 1009-1012. doi: 10.1029/96GL00247
    [2] Krause L H. The interaction of relativistic electron beams with the near-earth space environment[D]. Ann Arbor: University of Michigan, 1998.
    [3] Mironychev P V, Babich L P. Propagation of an electron beam in atmosphere at altitudes from 15 to 100 km: numerical experiment[J]. High Temperature, 2000, 38(6): 834-842. doi: 10.1023/A:1004172802986
    [4] Porazik P, Johnson J R, Kaganovich I, et al. Modification of the loss cone for energetic particles[J]. Geophysical Research Letters, 2014, 41(22): 8107-8113. doi: 10.1002/2014GL061869
    [5] Willard J M, Johnson J R, Snelling J M, et al. Effect of field-line curvature on the ionospheric accessibility of relativistic electron beam experiments[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 56. doi: 10.3389/fspas.2019.00056
    [6] Powis A T, Porazik P, Greklek-Mckeon M, et al. Evolution of a relativistic electron beam for tracing magnetospheric field lines[J]. Frontiers in Astronomy and Space Sciences, 2019, 6: 69. doi: 10.3389/fspas.2019.00069
    [7] 郝建红, 王希, 张芳, 等. 随移动窗推进的带电粒子束团长程传输模拟分析[J]. 国防科技大学学报, 2021, 43(5):168-174 doi: 10.11887/j.cn.202105020

    Hao Jianhong, Wang Xi, Zhang Fang, et al. Simulation analysis of long-range propagation of charged particle beams propelled by moving window[J]. Journal of National University of Defense Technology, 2021, 43(5): 168-174 doi: 10.11887/j.cn.202105020
    [8] Hao Jianhong, Wang Xi, Zhang Fang, et al. The influence of magnetic field on the beam quality of relativistic electron beam long-range propagation in near-Earth environment[J]. Plasma Science and Technology, 2021, 23: 115301. doi: 10.1088/2058-6272/ac183a
    [9] Yao Haibo, Yang Xiaohu, Zhang G B, et al. Stable transport of relativistic electron beams in plasmas[J]. Journal of Plasma Physics, 2022, 88: 905880105. doi: 10.1017/S002237782100132X
    [10] 钟海坚, 陈宗华, 赵炳炎. 基于MATLAB的地磁场中带电粒子运动模拟分析[J]. 大学物理实验, 2021, 34(1):83-86 doi: 10.14139/j.cnki.cn22-1228.2021.01.022

    Zhong Haijian, Chen Zonghua, Zhao Bingyan. The motion simulation of charged particles in geomagnetic field based on MATLAB[J]. Physical Experiment of College, 2021, 34(1): 83-86 doi: 10.14139/j.cnki.cn22-1228.2021.01.022
    [11] Maus S. IGRF[EB/OL]. [2023-07-15]. https://ccmc.gsfc.nasa.gov/models/IGRF~13/.
    [12] 李承祖, 银燕, 赵晶, 等. 电动力学[M]. 长沙: 国防科技大学出版社, 2022: 305-307

    Li Chengzu, Yin Yan, Zhao Jing, et al. Electrodynamics[M]. Changsha: National University of Defense Technology Press, 2022: 305-307
    [13] Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2): 69-106. doi: 10.1142/S0129065704001899
    [14] Snoek J, Larochelle H, Adams R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 2951-2959.
    [15] Srinivas N, Krause A, Kakade S, et al. Gaussian process optimization in the bandit setting: no regret and experimental design[C]//Proceedings of the 27th International Conference on Machine Learning (ICML). 2010: 1015-1022.
    [16] Brochu E, Cora V M, de Freitas N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[DB/OL]. arXiv preprint arXiv: 1012.2599, 2010.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  61
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-09-19
  • 录用日期:  2023-09-23
  • 网络出版日期:  2023-09-26
  • 刊出日期:  2023-10-08

目录

    /

    返回文章
    返回