留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型氦氙冷却移动式反应堆堆芯设计优化分析

刘欣悦 管超然 邓蛟龙 柴翔 何东豪 刘晓晶

刘欣悦, 管超然, 邓蛟龙, 等. 小型氦氙冷却移动式反应堆堆芯设计优化分析[J]. 强激光与粒子束, 2023, 35: 116002. doi: 10.11884/HPLPB202335.230253
引用本文: 刘欣悦, 管超然, 邓蛟龙, 等. 小型氦氙冷却移动式反应堆堆芯设计优化分析[J]. 强激光与粒子束, 2023, 35: 116002. doi: 10.11884/HPLPB202335.230253
Liu Xinyue, Guan Chaoran, Deng Jiaolong, et al. Optimal core design analysis for a small mobile helium-xenon cooled solid reactor[J]. High Power Laser and Particle Beams, 2023, 35: 116002. doi: 10.11884/HPLPB202335.230253
Citation: Liu Xinyue, Guan Chaoran, Deng Jiaolong, et al. Optimal core design analysis for a small mobile helium-xenon cooled solid reactor[J]. High Power Laser and Particle Beams, 2023, 35: 116002. doi: 10.11884/HPLPB202335.230253

小型氦氙冷却移动式反应堆堆芯设计优化分析

doi: 10.11884/HPLPB202335.230253
基金项目: 国家重点研发计划项目(2020YFB1901900);国家自然科学基金项目(12275175);上海市工业强基计划项目(GYQJ-2018-2-02);上海市启明星计划项目(21QA1404200);中核集团“领创科研”项目
详细信息
    作者简介:

    刘欣悦,xinyueliu@sjtu.edu.cn

    通讯作者:

    柴 翔,xiangchai@sjtu.edu.cn

  • 中图分类号: TL32

Optimal core design analysis for a small mobile helium-xenon cooled solid reactor

  • 摘要: 小型移动式核反应堆电源能为偏远地区、事故应急等场景提供所需的电能和热能,而堆芯的轻量化和小型化是小型移动式核反应堆电源的设计重点。由此,基于前期概念设计,本研究提出了一个高可靠、长寿命的小型氦氙冷却固体核反应堆堆芯设计及其反应性控制方案。首先,在综合考虑反应堆寿命以及热工安全设计等限制条件的基础上,使用蒙特卡罗程序OpenMC进行了堆芯几何优化分析,得到了堆芯质量最小化的设计方案。其次,分析了含可燃毒物的布置优化方案,通过在堆芯靠近反射层附近的燃料棒中添加2%质量分数的可燃毒物Gd2O3,寿期初径向功率峰因子从2.22降低至1.43。最后,基于分层分块滑移反射层的反应性与功率控制方法,提出了反应性线性控制方案,该方案还可以保证事故情况下的反应堆安全。相关结果可为小型移动式核反应堆电源的堆芯设计及反应性控制提供参考。
  • 图  1  堆内重复排列基本单元

    Figure  1.  Basic unit of the core

    图  2  堆芯尺寸设计区间

    Figure  2.  Design range of core size under P and T limits

    图  3  不同堆芯高度下的轴向反射层厚度与堆芯质量

    Figure  3.  Core mass under different axial parameters

    图  4  堆芯初始设计径向功率分布

    Figure  4.  Normalized radial power distribution of original design

    图  5  在燃料棒中掺Gd2O3的三种布置方式

    Figure  5.  Layouts of BP in fuel rods

    图  6  可燃毒物的不同布置方式对寿期内径向功率峰因子的影响

    Figure  6.  Variation of radial power distribution upon three BP layouts

    图  7  可燃毒物的不同布置方式对燃耗深度的影响

    Figure  7.  Variation of burnup upon three BP layouts

    图  8  堆芯设计优化方案

    Figure  8.  Optimal design scheme of the core

    图  9  寿期初末径向功率分布

    Figure  9.  Normalized power distribution at beginning of lifetime (BOL) and end of lifetime (EOL)

    图  10  反射层分层分块示意图

    Figure  10.  Schematic illustration of sliding reflector segments

    图  11  单个滑块抽拉示意图

    Figure  11.  Control scheme of single slider

    图  12  不同分层组合滑块价值

    Figure  12.  Reactivity swing for different layered sliders

    图  13  功率峰因子随抽出滑块数变化

    Figure  13.  Power peak factor versus number of sliding segments fully withdrawn

    图  14  单个滑块在不同闭合程度下的积分价值

    Figure  14.  Integral worth of single slider under different closeness

    表  1  堆芯基准方案基本参数

    Table  1.   Basic parameters of the core

    fuel coolant cladding moderator reflector 235U
    enrichment/%
    fuel
    diameter/cm
    pitch-diameter
    ratio
    coolant channel
    diameter/cm
    cladding
    thickness/cm
    UC helium-xenon mixture Mo-TZM graphite Be 19.75 1.5 1 0.8 0.05
    下载: 导出CSV

    表  2  堆芯几何参数

    Table  2.   Geometry parameters of core

    core radius/cm core height/cm radial reflector thickness/cm axial reflector thickness/cm
    44 104 16 5
    下载: 导出CSV

    表  3  可燃毒物的不同布置方式对功率分布影响

    Table  3.   Power distribution upon three BP layouts

    layout mass fraction/% keff radial power peak factor at BOL
    no BP 1.08670 2.22
    No.1 0.1 1.07170 2.07
    0.5 1.04315 1.79
    1.0 1.02381 1.64
    2.0 0.99550 1.50
    3.0 0.97369 1.43
    No.2 0.1 1.07214 2.05
    0.5 1.04682 1.78
    1.0 1.02090 1.62
    2.0 1.00804 1.45
    3.0 0.99283 1.36
    No.3 0.1 1.07412 2.06
    0.5 1.05242 1.76
    1.0 1.03982 1.61
    2.0 1.02711 1.43
    3.0 1.02072 1.33
    下载: 导出CSV

    表  4  堆芯优化方案参数

    Table  4.   Parameters of the optimal core

    power/MW life/d number of fuel rods number of fuel rods with BP mass of fuel without BP/t mass of fuel with BP/t core mass/t
    20 3 500 955 186 1.93 0.46 4.49
    下载: 导出CSV

    表  5  径向反射层各层厚度组合

    Table  5.   Different choices for subdividing the radial reflector

    layering choice reflector thickness/cm
    first layer second layer third layer
    case 1 5 4 7
    case 2 6 3 7
    case 3 4 4 8
    case 4 5 3 8
    case 5 3 4 9
    case 6 4 3 9
    下载: 导出CSV

    表  6  卡块事故分析

    Table  6.   Accident analysis of stuck sliders

    state of outmost layer location of stuck slider shutdown margin/10−5
    fixed B1 635
    B1、B2 66
    B5 895
    B5、B6 305
    withdrawn B1 6913
    B1、B2 5693
    B5 7123
    B5、B6 6146
    下载: 导出CSV
  • [1] Wollman M J, Zika M J. Prometheus project reactor module final report, for naval reactors information[R]. West Mifflin: Knolls Atomic Power Lab. , 2006.
    [2] Ashcroft J, Eshelman C. Summary of NR program Prometheus efforts[J]. AIP Conference Proceedings, 2007, 880(1): 497-521.
    [3] 郭凯伦, 王成龙, 秋穗正, 等. 兆瓦级核电推进系统布雷顿循环热电转换特性分析[J]. 原子能科学技术, 2019, 53(1):16-23

    Guo Kailun, Wang Chenglong, Qiu Suizheng, et al. Analysis on thermoelectric conversion characteristic of Brayton cycle in megawatt-class nuclear electric propulsion system[J]. Atomic Energy Science and Technology, 2019, 53(1): 16-23
    [4] El-Genk M S, Tournier J M. Noble-gas binary mixtures for closed-Brayton-cycle space reactor power systems[J]. Journal of Propulsion and Power, 2007, 23(4): 863-873. doi: 10.2514/1.27664
    [5] Zhou Biao, Ji Yu, Sun Jun, et al. Nusselt number correlation for turbulent heat transfer of helium–xenon gas mixtures[J]. Nuclear Science and Techniques, 2021, 32: 128. doi: 10.1007/s41365-021-00972-1
    [6] Meng Tao, Tan Sichao, He Yuhao, et al. Preliminary design considerations of He-Xe mixture cooled space nuclear reactor[C]//Proceedings of the 26th International Conference on Nuclear Engineering. 2018: V009T16A012.
    [7] Li Zeguang, Sun Jun, Liu Malin, et al. Design of a hundred-kilowatt level integrated gas-cooled space nuclear reactor for deep space application[J]. Nuclear Engineering and Design, 2020, 361: 110569. doi: 10.1016/j.nucengdes.2020.110569
    [8] Buden D. Summary of space nuclear reactor power systems, 1983--1992[R]. Idaho Falls: Idaho National Engineering Lab. , 1993.
    [9] Rhee H S, Wetch J R, Gunther N, et al. Space-R thermionic space nuclear power system with single cell incore thermionic fuel elements[J]. AIP Conference Proceedings, 1992, 246(1): 120-129.
    [10] Li Jian, Zhou Qin, Xia Yan, et al. Study on reactivity control strategies for the thermoelectric integrated space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 145: 107607. doi: 10.1016/j.anucene.2020.107607
    [11] Guan Chaoran, Chai Xiang, Zhang Tengfei, et al. Preliminary lightweight core design analysis of a micro-transportable gas-cooled thermal reactor[J]. International Journal of Energy Research, 2022, 46(12): 17416-17428. doi: 10.1002/er.8408
    [12] El-Genk M S, Tournier J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems[J]. Journal of Nuclear Materials, 2005, 340(1): 93-112. doi: 10.1016/j.jnucmat.2004.10.118
    [13] 沈芷睿, 孙启政, 何东豪, 等. 基于BEAVRS基准题高保真建模的OpenMC程序和NECP-X程序的对比验证[J]. 核技术, 2022, 45:010602

    Shen Zhirui, Sun Qizheng, He Donghao, et al. Comparison and verification of NECP-X and OpenMC using high-fidelity BEAVRS benchmark models[J]. Nuclear Techniques, 2022, 45: 010602
    [14] 于平安, 朱瑞安, 喻真烷, 等. 核反应堆热工分析[M]. 上海: 上海交通大学出版社, 2002

    Yu Ping’an, Zhu Ruian, Yu Zhenwan, et al. Thermal analysis of nuclear reactor[M]. Shanghai: Shanghai Jiaotong University Press, 2002
    [15] 沈维道, 郑佩芝, 蒋淡安. 工程热力学[M]. 北京: 高等教育出版社, 1983

    Shen Weidao, Zheng Peizhi, Jiang Danan. Engineering thermodynamics[M]. Beijing: Higher Education Press, 1983
    [16] Driscoll M J, Downar T J, Pilat E E. The linear reactivity model for nuclear fuel management[M]. La Grange Park: American Nuclear Society, 1990.
    [17] 刘思佳, 朱贵凤, 严睿, 等. 小型模块化氟盐冷却高温堆可燃毒物布置方案[J]. 核技术, 2020, 43:050602 doi: 10.11889/j.0253-3219.2020.hjs.43.050602

    Liu Sijia, Zhu Guifeng, Yan Rui, et al. Placement scheme of burnable poisons in a small modular fluoride-cooled high temperature reactor[J]. Nuclear Techniques, 2020, 43: 050602 doi: 10.11889/j.0253-3219.2020.hjs.43.050602
    [18] Hossain T, Sahadath H, Nabila U M. Neutronic and fuel cycle performance of VVER-1000 for dual cooled annular fuel with coated burnable poison[J]. Progress in Nuclear Energy, 2022, 145: 104139. doi: 10.1016/j.pnucene.2022.104139
    [19] 张成龙, 袁媛, 堵树宏, 等. 气冷微型堆可燃毒物研究[J]. 强激光与粒子束, 2022, 34:026010 doi: 10.11884/HPLPB202234.210264

    Zhang Chenglong, Yuan Yuan, Du Shuhong, et al. Research on burnable poison in micro gas-cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34: 026010 doi: 10.11884/HPLPB202234.210264
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  104
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2023-10-12
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-11-11

目录

    /

    返回文章
    返回