留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩残差网络的雷达辐射源识别方法研究

郭恩泽 刘正堂 崔博 刘国彬 史航宇 蒋旭

郭恩泽, 刘正堂, 崔博, 等. 基于压缩残差网络的雷达辐射源识别方法研究[J]. 强激光与粒子束, 2024, 36: 043016. doi: 10.11884/HPLPB202436.230119
引用本文: 郭恩泽, 刘正堂, 崔博, 等. 基于压缩残差网络的雷达辐射源识别方法研究[J]. 强激光与粒子束, 2024, 36: 043016. doi: 10.11884/HPLPB202436.230119
Guo Enze, Liu Zhengtang, Cui Bo, et al. Radar radiation source recognition method based on compressed residual network[J]. High Power Laser and Particle Beams, 2024, 36: 043016. doi: 10.11884/HPLPB202436.230119
Citation: Guo Enze, Liu Zhengtang, Cui Bo, et al. Radar radiation source recognition method based on compressed residual network[J]. High Power Laser and Particle Beams, 2024, 36: 043016. doi: 10.11884/HPLPB202436.230119

基于压缩残差网络的雷达辐射源识别方法研究

doi: 10.11884/HPLPB202436.230119
基金项目: 国家自然科学基金项目(61571043)
详细信息
    作者简介:

    郭恩泽,g1903632257@163.com

    通讯作者:

    蒋 旭,13525965959@139.com

  • 中图分类号: TN971

Radar radiation source recognition method based on compressed residual network

  • 摘要: 针对低信噪比条件下,现有的雷达辐射源信号识别方法存在识别正确率低、时效性差的问题,提出了一种基于压缩残差网络的雷达辐射源信号识别方法。首先,利用Choi-Williams分布的时频分析方法将时域信号转换为二维时频图像;然后,根据应用场景特点,选择卷积神经网络(Convolutional Neural Networks, CNN)“压缩”范围;最后,构建压缩残差网络来自动提取图像特征并完成分类。仿真实验结果表明,在同等体量的设计下,与当前较为常用的标准CNN以及ResNet模型相比,所提模型能够降低信号识别运行时间约88%,在信噪比为−14 dB条件下对14种雷达辐射源信号的平均识别率高约5%。提供了一种高效的雷达辐射源信号智能识别方法,具有潜在的工程应用前景。
  • 图  1  14类雷达辐射源信号的CWD时频分布图

    Figure  1.  CWD time-frequency distribution of 14 radar emitter signals

    图  2  信号预处理流程图

    Figure  2.  Signal preprocessing flow chart

    图  3  残差单元基本结构

    Figure  3.  Basic structure of residual unit

    图  4  扩张卷积与感受野

    Figure  4.  Expansion convolution and receptive field

    图  5  CRN模型

    Figure  5.  CRN model

    图  6  不同设计方法识别率对比

    Figure  6.  Comparison of recognition rates of different design methods

    图  7  不同方法对多相编码信号的识别率

    Figure  7.  Recognition rate of polyphase coded signals by different methods

    图  8  不同方法识别多相编码信号的混淆矩阵

    Figure  8.  Confusion matrix for different methods to identify polyphase coding

    图  9  各模型整体识别率

    Figure  9.  Overall recognition rate of each model

    表  1  信号参数设置

    Table  1.   Signal parameter setting

    modulation type parameter ranges
    CW carrier frequency $ {f_0} $ [1/10,1/4]fs
    LFM、NLFM carrier frequency $ {f_0} $ [1/10,1/4]fs
    bandwidth B [1/10,1/4]fs
    BPSK carrier frequency $ {f_0} $ [1/10,1/4]fs
    barker code length 7
    QPSK carrier frequency $ {f_0} $ [1/10,1/4]fs
    phase coding sequence length 6
    FMCW carrier frequency $ {f_0} $ [1/20,1/5]fs
    bandwidth B [1/20,1/5]fs
    cycle T 1$ {\text{μ s}} $
    FRANK、P1, P2, P3, P4 carrier frequency $ {f_0} $ [1/10,1/4]fs
    step frequency N {6,8}
    BFSK carrier frequency $ {f_0} $ [1/20,1/4]fs
    barker code length {11,13}
    QFSK carrier frequency $ {f_0} $ [1/10,1/4]fs
    frequency coding sequence length {6,7}
    COSTAS carrier frequency $ {f_0} $ [1/10,1/4]fs
    frequency coding sequence length {6,7,8}
    下载: 导出CSV

    表  2  不同模型各卷积运算需要的乘加计算量

    Table  2.   Multi-adds calculation amount required for each convolution operation of different models

    model structure FLOPS
    model 2 of this article Ref. [22] model
    conv1 112×112×1×32×7×7 19668992 112×112×1×32×7×7 19668992
    conv2_x 56×56×32×32×3×3×2 57802752 56×56×32×32×3×3×2 57802752
    conv3_x 28×28×32×64×3×3+28×28×64×64×3×3 43352064 28×28×32×64×3×3+28×28×64×64×3×3 43352064
    conv4_x 14×14×64×128×3×3+14×14×128×128×3×3 43352064 28×28×64×128×3×3+28×28×128×128×3×3 173408256
    conv5_x 7×7×128×256×3×3+7×7×256×256×3×3 43352064 28×28×128×256×3×3+28×28×256×256×3×3 693633024
    conv6_x 3×3×256×256×3×3×2 10616832 28×28×256×256×3×3×2 924844032
    fc 256×14 3584 256×14 3584
    sum 218, 148, 352 1, 912, 712, 704
    下载: 导出CSV
  • [1] López-Risueño G, Grajal J, Sanz-Osorio A. Digital channelized receiver based on time-frequency analysis for signal interception[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 879-898. doi: 10.1109/TAES.2005.1541437
    [2] Zhang Ming, Diao Ming, Gao Lipeng, et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9(5): 75. doi: 10.3390/sym9050075
    [3] Kishore T R, Rao K D. Automatic intrapulse modulation classification of advanced LPI radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 901-914. doi: 10.1109/TAES.2017.2667142
    [4] Zilberman E R, Pace P E. Autonomous time-frequency morphological feature extraction algorithm for LPI radar modulation classification[C]//2006 International Conference on Image Processing. 2006: 2321-2324.
    [5] Guo Qiang, Nan Pulong, Zhang Xiaoyu, et al. Recognition of radar emitter signals based on SVD and AF main ridge slice[J]. Journal of Communications and Networks, 2015, 17(5): 491-498. doi: 10.1109/JCN.2015.000087
    [6] Zhu Ming, Jin Weidong, Pu Yunwei, et al. Classification of radar emitter signals based on the feature of time-frequency atoms[C]//2007 International Conference on Wavelet Analysis and Pattern Recognition. 2007: 1232-1236.
    [7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[DB/OL]. arXiv preprint arXiv: 1409.1556, 2015.
    [8] Tompson J, Goroshin R, Jain A, et al. Efficient object localization using convolutional networks[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015: 648-656.
    [9] Sainath T N, Kingsbury B, Mohamed A R, et al. Improvements to deep convolutional neural networks for LVCSR[C]//2013 IEEE Workshop on Automatic Speech Recognition and Understanding. 2013: 315-320.
    [10] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [11] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [12] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [13] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 1097-1105.
    [14] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1-9.
    [15] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
    [16] Zhang Ming, Diao Ming, Guo Limin. Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5: 11074-11082. doi: 10.1109/ACCESS.2017.2716191
    [17] Zhang Ming, Liu Lutao, Diao Ming. LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16(10): 1682. doi: 10.3390/s16101682
    [18] Kong S H, Kim M, Hoang L M, et al. Automatic LPI radar waveform recognition using CNN[J]. IEEE Access, 2018, 6: 4207-4219. doi: 10.1109/ACCESS.2017.2788942
    [19] Peng Shengliang, Jiang Hanyu, Wang Huaxia, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718-727. doi: 10.1109/TNNLS.2018.2850703
    [20] Gao Jingpeng, Shen Liangxi, Gao Lipeng. Modulation recognition for radar emitter signals based on convolutional neural network and fusion features[J]. Transactions on Emerging Telecommunications Technologies, 2019, 30(12): e3612. doi: 10.1002/ett.3612
    [21] Kumar Y, Sheoran M, Jajoo G, et al. Automatic modulation classification based on constellation density using deep learning[J]. IEEE Communications Letters, 2020, 24(6): 1275-1278. doi: 10.1109/LCOMM.2020.2980840
    [22] 秦鑫, 黄洁, 查雄, 等. 基于扩张残差网络的雷达辐射源信号识别[J]. 电子学报, 2020, 48(3):456-462 doi: 10.3969/j.issn.0372-2112.2020.03.006

    Qin Xin, Huang Jie, Zha Xiong, et al. Radar emitter signal recognition based on dilated residual network[J]. Acta Electronica Sinica, 2020, 48(3): 456-462 doi: 10.3969/j.issn.0372-2112.2020.03.006
    [23] Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 636-644.
    [24] Lin Min, Chen Qiang, Yan Shuicheng. Network in network[DB/OL]. arXiv preprint arXiv: 1312.4400, 2014.
    [25] Dos Santos C F G, Papa J P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks[J]. ACM Computing Surveys, 2022, 54: 213.
    [26] Wang Panqu, Chen Pengfei, Yuan Ye, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018: 1451-1460.
    [27] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. 2015: 448-456.
    [28] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. 2011: 315-323.
    [29] Zhang Xiangyu, Zhou Xinyu, Lin Mengxiao, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 6848-6856.
    [30] Sandler M, Howard A, Zhu Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 4510-4520.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  86
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-10-20
  • 录用日期:  2023-10-20
  • 网络出版日期:  2023-10-28
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回