留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论热等离子体中电子声波的非线性频移

钱平通 张小波 黄茂 薛具奎

钱平通, 张小波, 黄茂, 等. 相对论热等离子体中电子声波的非线性频移[J]. 强激光与粒子束, 2024, 36: 012002. doi: 10.11884/HPLPB202436.230136
引用本文: 钱平通, 张小波, 黄茂, 等. 相对论热等离子体中电子声波的非线性频移[J]. 强激光与粒子束, 2024, 36: 012002. doi: 10.11884/HPLPB202436.230136
Qian Pingtong, Zhang Xiaobo, Huang Mao, et al. Nonlinear frequency shift of electron acoustic waves in relativistic hot plasma[J]. High Power Laser and Particle Beams, 2024, 36: 012002. doi: 10.11884/HPLPB202436.230136
Citation: Qian Pingtong, Zhang Xiaobo, Huang Mao, et al. Nonlinear frequency shift of electron acoustic waves in relativistic hot plasma[J]. High Power Laser and Particle Beams, 2024, 36: 012002. doi: 10.11884/HPLPB202436.230136

相对论热等离子体中电子声波的非线性频移

doi: 10.11884/HPLPB202436.230136
基金项目: 国家自然科学基金项目(12305276、11865014、11765017、11764039);甘肃省自然科学基金项目(22JR5RA174);甘肃省高等学校创新能力提升项目(2022A-011);西北师范大学科技创新项目(NWNU-LKQN2022-05)
详细信息
    作者简介:

    钱平通,1258452155@qq.com

    通讯作者:

    薛具奎,xuejk@nwnu.edu.cn

  • 中图分类号: O539

Nonlinear frequency shift of electron acoustic waves in relativistic hot plasma

  • 摘要: 研究了相对论电磁波在热等离子体中传播时的色散特性以及由于非线性电子声波激发引起的电子声波的非线性频移。基于相对论激光在热等离子体中传播的电磁流体物理模型,采用流体的非线性频移理论,利用微扰法得到了描述相对论激光与热等离子体相互作用时谐波产生的非线性频移方程。结果表明,等离子体密度、电子温度和一阶谐波振幅是决定相对论热等离子体中非线性频移的主要因素。在弱激发下,非线性频移随着电子温度和一阶谐波振幅的增大而增大,等离子体密度抑制非线性频移。电子声波非线性频移对等离子体密度和电子温度的依赖表现出了强烈的非线性特征。研究结果为深入理解高能量激光与热等离子体相互作用中谐波的产生及引起的非线性频移提供了理论依据。
  • 图  1  k = 0.25的情况下,等离子体密度η和电子温度f对非线性频移系数L和二次谐波系数A的影响

    Figure  1.  Effects of plasma density η and electron temperature f on nonlinear frequency shift coeffcient L and second harmonic coeffcient A for k = 0.25

    图  2  等离子体密度η、电子温度f、一阶谐波振幅φ1和波数k对非线性频移的影响

    Figure  2.  Effect of plasma density η, electron temperature f, the first harmonic amplitude φ1 and wave number k on nonlinear frequency shift

    图  3  k=0.25的情况下,非线性频移随电子温度f的变化

    Figure  3.  Variation of nonlinear frequency shift with electron temperature f for k = 0.25

  • [1] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Rev Mod Phys, 2009, 81(3): 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [2] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Phys Today, 2009, 62(3): 44-49. doi: 10.1063/1.3099645
    [3] Shen Baifei, Yu M Y. High-intensity laser-field amplification between two foils[J]. Phys Rev Lett, 2002, 89: 275004. doi: 10.1103/PhysRevLett.89.275004
    [4] Yu Jinqing, Hu Ronghao, Gong Zheng, et al. The generation of collimated γ -ray pulse from the interaction between 10 PW laser and a narrow tube target[J]. Appl Phys Lett, 2018, 112: 204103.
    [5] 杨柏谦, 张继彦, 韩申生, 等. Al激光等离子体电子密度的空间分辨诊断[J]. 强激光与粒子束, 2005, 17(5):703-706

    Yang Boqian, Zhang Jiyan, Han Shensheng, et al. Space-resolved diagnosis for the electron density of laser-produced aluminum plasma[J]. High Power Laser and Particle Beams, 2005, 17(5): 703-706
    [6] 陈华英, 刘三秋, 李晓卿. 线偏振激光在磁化等离子体中的调制不稳定性[J]. 强激光与粒子束, 2008, 20(12):2022-2026

    Chen Huaying, Liu Sanqiu, Li Xiaoqing. Modulation instability of linearly polarized laser beam in magnetized plasma[J]. High Power Laser and Particle Beams, 2008, 20(12): 2022-2026
    [7] Chen Min, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerator[J]. Phys Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
    [8] Luo Ji, Chen Min, Zeng Ming, et al. A compact tunable polarized X-ray source based on laser-plasma helical undulators[J]. Sci Rep, 2016, 6: 29101. doi: 10.1038/srep29101
    [9] Liu Maochuan, Weng Siming, Wang H C, et al. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers[J]. Phys Plasmas, 2018, 25: 063103. doi: 10.1063/1.5033991
    [10] Holkundkar A R, Brodin G. Transition from wakefield generation to soliton formation[J]. Phys Rev E, 2018, 97: 043204. doi: 10.1103/PhysRevE.97.043204
    [11] Qian Pingtong, Zhang Xiaobo, Jiao Chen, et al. The nonlinear interaction of relativistic laser and hot plasma[J]. Phys Plasmas, 2023, 30: 012106. doi: 10.1063/5.0128595
    [12] Mackinnon A J, Sentoku Y, Patel P K, et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses[J]. Phys Rev Lett, 2002, 88: 215006. doi: 10.1103/PhysRevLett.88.215006
    [13] Xu Zhiyi, Xiao Chaofan, Lu Haiyang, et al. New injection and acceleration scheme of positrons in the laser-plasma bubble regime[J]. Phys Rev Accel Beams, 2020, 23: 091301. doi: 10.1103/PhysRevAccelBeams.23.091301
    [14] Sodha M S, Sharma J K, Tewari D P, et al. Plasma wave and second harmonic generation[J]. Plasmas Phys, 1978, 20(8): 825-835. doi: 10.1088/0032-1028/20/8/007
    [15] Quéré F, Thaury C, Geindre J P, et al. Phase properties of laser high-order harmonics generated on plasma mirrors[J]. Phys Rev Lett, 2008, 100: 095004. doi: 10.1103/PhysRevLett.100.095004
    [16] Cohen B I, Lasinski B F, Langdon A B, et al. Resonantly excited nonlinear ion waves[J]. Phys Plasmas, 1997, 4(4): 956-977. doi: 10.1063/1.872187
    [17] Froula D H, Divol L, Braun D G, et al. Stimulated Brillouin scattering in the saturated regime[J]. Phys Plasmas, 2003, 10(5): 1846-1853. doi: 10.1063/1.1542887
    [18] Divol L, Berger R L, Cohen B I, et al. Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas[J]. Phys Plasmas, 2003, 10(5): 1822-1828. doi: 10.1063/1.1557055
    [19] Cohen B I, Divol L, Langdon A B, et al. Saturation of stimulated Brillouin backscattering in two-dimensional kinetic ion simulations[J]. Phys Plasmas, 2005, 12: 052703. doi: 10.1063/1.1878792
    [20] Feng Qingsong, Xiao Chengzhuo, Wang Qing, et al. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region[J]. Phys Rev E, 2016, 94: 023205. doi: 10.1103/PhysRevE.94.023205
    [21] Berger R L, Brunner S, Chapman T, et al. Electron and ion kinetic effects on non-linearly driven electron plasma and ion acoustic waves[J]. Phys Plasmas, 2013, 20: 032107. doi: 10.1063/1.4794346
    [22] Riconda C, Heron A, Pesme D, et al. Electron kinetic effects in the nonlinear evolution of a driven ion-acoustic wave[J]. Phys Rev Lett, 2005, 94: 055003. doi: 10.1103/PhysRevLett.94.055003
    [23] Riconda C, Heron A, Pesme D, et al. Electron and ion kinetic effects in the saturation of a driven ion acoustic wave[J]. Phys Plasmas, 2005, 12: 112308. doi: 10.1063/1.2132272
    [24] Pesme D, Riconda C, Tikhonchuk V T. Parametric instability of a driven ion-acoustic wave[J]. Phys Plasmas, 2005, 12: 092101. doi: 10.1063/1.2000567
    [25] Rose H A. Langmuir wave self-focusing versus decay instability[J]. Phys Plasmas, 2005, 12: 012318. doi: 10.1063/1.1829066
    [26] Banks J W, Berger R L, Brunner S, et al. Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss[J]. Phys Plasmas, 2011, 18: 052102. doi: 10.1063/1.3577784
    [27] Akhiezer A I, Polovin R V. Theory of wave motion of an electron plasma[J]. Sov Phys JETP, 1956, 3: 696-705.
    [28] Bertrand P, Baumann G, Feix M R. Frequency shift of non linear electron plasma oscillation[J]. Phys Lett A, 1969, 29(9): 489-490. doi: 10.1016/0375-9601(69)90390-9
    [29] Dewar R L, Lindl J. Nonlinear frequency shift of a plasma wave[J]. Phys Fluids, 1972, 15(5): 820-824. doi: 10.1063/1.1693990
    [30] Kakutani T, Sugimoto N. Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation[J]. Phys Fluids, 1974, 17(8): 1617-1625. doi: 10.1063/1.1694942
    [31] Albright B J, Yin Lilan, Bowers K J, et al. Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay[J]. Phys Plasmas, 2016, 23: 032703. doi: 10.1063/1.4943102
    [32] Cohen B I, Lasinski B F, Langdon A B, et al. Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma[J]. Phys Plasmas, 1998, 5(9): 3408-3415. doi: 10.1063/1.873055
    [33] 张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12):3091-3097 doi: 10.3788/HPLPB20132512.3091

    Zhang Lin, Du Kai. Target technologies for laser inertial confinement fusion: State-of-the-art and future perspective[J]. High Power Laser Part Beams, 2013, 25(12): 3091-3097 doi: 10.3788/HPLPB20132512.3091
    [34] 袁强, 胡东霞, 张鑫, 等. 激光聚变冲击点火物理特性研究[J]. 物理学报, 2011, 60:015202 doi: 10.7498/aps.60.015202

    Yuan Qiang, Hu Dongxia, Zhang Xin, et al. Study on the mechanism of shock ignition in laser fusion[J]. Acta Physica Sinica, 2011, 60: 015202 doi: 10.7498/aps.60.015202
    [35] 唐熊忻, 邱基斯, 樊仲维, 等. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd, Y: CaF2激光放大器的实验研究[J]. 物理学报, 2016, 65:204206 doi: 10.7498/aps.65.204206

    Tang Xiongxin, Qiu Jisi, Fan Zhongwei, et al. Experimental study of diode-pumped Nd, Y: CaF2 amplifier for inertial confinement fusion laser driver[J]. Acta Physica Sinica, 2016, 65: 204206 doi: 10.7498/aps.65.204206
    [36] Winjum B J, Fahlen J, Mori W B. The relative importance of fluid and kinetic frequency shifts of an electron plasma wave[J]. Phys Plasmas, 2007, 14: 102104. doi: 10.1063/1.2790385
    [37] O’NEIL T. Collisionless damping of nonlinear plasma oscillations[J]. Phys Fluids, 1965, 8(12): 2255-2262. doi: 10.1063/1.1761193
    [38] Saxena V, Kourakis I, Sanchez-Arriaga G, et al. Interaction of spatially overlapping standing electromagnetic solitons in plasmas[J]. Phys Lett A, 2013, 377(6): 473-477. doi: 10.1016/j.physleta.2012.12.010
    [39] Saxena V, Kourakis I. Superluminal electromagnetic solitary waves in electron-positron plasmas[J]. Europhys Lett, 2012, 100: 15002. doi: 10.1209/0295-5075/100/15002
    [40] Siminos E, Sánchez-Arriaga G, Saxena V, et al. Modeling relativistic soliton interactions in overdense plasmas: a perturbed nonlinear Schrödinger equation framework[J]. Phys Rev E, 2014, 90: 063104. doi: 10.1103/PhysRevE.90.063104
    [41] Mahajan S M. Temperature-transformed “minimal coupling”: magnetofluid unification[J]. Phys Rev Lett, 2003, 90: 035001. doi: 10.1103/PhysRevLett.90.035001
  • 加载中
图(3)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  186
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-12-23
  • 录用日期:  2023-12-19
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回