留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效磁路网络法的均匀正交磁场对环形磁芯等效电感的影响

王绍宇 杨勇 张明

王绍宇, 杨勇, 张明. 基于等效磁路网络法的均匀正交磁场对环形磁芯等效电感的影响[J]. 强激光与粒子束, 2024, 36: 025018. doi: 10.11884/HPLPB202436.230155
引用本文: 王绍宇, 杨勇, 张明. 基于等效磁路网络法的均匀正交磁场对环形磁芯等效电感的影响[J]. 强激光与粒子束, 2024, 36: 025018. doi: 10.11884/HPLPB202436.230155
Wang Shaoyu, Yang Yong, Zhang Ming. Influence of uniform orthogonal background magnetic field on equivalent inductance of toroidal magnetic cores based on magnetic equivalent circuit network method[J]. High Power Laser and Particle Beams, 2024, 36: 025018. doi: 10.11884/HPLPB202436.230155
Citation: Wang Shaoyu, Yang Yong, Zhang Ming. Influence of uniform orthogonal background magnetic field on equivalent inductance of toroidal magnetic cores based on magnetic equivalent circuit network method[J]. High Power Laser and Particle Beams, 2024, 36: 025018. doi: 10.11884/HPLPB202436.230155

基于等效磁路网络法的均匀正交磁场对环形磁芯等效电感的影响

doi: 10.11884/HPLPB202436.230155
基金项目: 国家重点研发计划项目(2017YFE0301803);国家自然科学基金项目(51821005)
详细信息
    作者简介:

    王绍宇,shaoyuwang@hust.edu.cn

    通讯作者:

    杨 勇,yangyong_hust@hust.edu.cn

  • 中图分类号: TM552

Influence of uniform orthogonal background magnetic field on equivalent inductance of toroidal magnetic cores based on magnetic equivalent circuit network method

  • 摘要: 电源中的磁性元件对外部磁场天然敏感,其工作特性直接影响电源的输出特性。实现背景磁场的建模是研究电源中磁性元件受强杂散磁场干扰问题的重要前提,但目前关注这一应用场景的相关研究较少,且常用的电磁场分析方法难以兼顾计算的精度和效率。基于等效磁路网络法提出了一种杂散磁场效应的分析方法,该方法将研究对象等效生成磁路单元,离散形成网络模型,并通过求解等效磁路系统方程得到模型的场量分布。以一款具体的环形铁氧体磁芯为例,利用等效磁路网络法计算了环形磁芯在直流激励和均匀正交磁场下的场量分布,分析了背景磁场对其等效电感的影响。通过对比等效磁路网络法与有限元法的计算结果,验证了该方法的准确性与高效性,且适用于电源受背景磁场干扰问题的分析。
  • 图  1  等效磁通管及其等效磁路模型

    Figure  1.  Equivalent flux tube and magnetic equivalent circuit model

    图  2  有源元件的等效磁路单元

    Figure  2.  Magnetic equivalent circuit unit of active components

    图  3  3D等效磁路单元

    Figure  3.  3-D magnetic equivalent circuit unit

    图  4  环形磁芯及其主要尺寸

    Figure  4.  Toroidal magnetic core and its main dimensions

    图  5  25 ℃时环形磁芯材料的B-H曲线与μr-H曲线

    Figure  5.  B-H curve and μr-H curve of the material of the toroidal magnetic core at 25 ℃

    图  6  基于等效磁路网络法的环形磁芯模型

    Figure  6.  Toroidal magnetic core model based on MECN

    图  7  环形磁芯模型的求解迭代步骤

    Figure  7.  Iterative steps for solving the toroidal magnetic core model

    图  8  环形磁芯模型的电感值随空气域的变化曲线

    Figure  8.  Variation of inductance of toroidal magnetic core model with air domain edge lengths

    图  9  MECN收敛曲线

    Figure  9.  Convergence curve of MECN

    图  11  环形磁芯模型的相对磁导率分布

    Figure  11.  Relative permeability distribution of the toroidal magnetic core model

    图  12  环形磁芯模型的沿均匀正交磁场方向的磁感应强度矢量分布

    Figure  12.  Vector distribution of magnetic induction along the direction of the uniform orthogonal magnetic field of the toroidal magnetic core model

    图  13  环形磁芯模型的磁感应强度大小分布

    Figure  13.  Magnetic induction intensity distribution of the toroidal magnetic core model

    图  10  基于有限元法的环形磁芯模型

    Figure  10.  Toroidal magnetic core model based on FEA

    图  14  MECN与FEA的等效电感计算结果对比

    Figure  14.  Comparison of equivalent inductance calculation results between MECN and FEA

    表  1  MECN和FEA的计算资源比较

    Table  1.   Computational resource comparison between MECN and FEA

    methodnumber of gridssimulation time/s
    MECN40151.97
    FEA112311135
    下载: 导出CSV
  • [1] Hourtoule J, van Houtte D, Fejoz P, et al. Magnetic compatibility of standard components for electrical installations: tests on programmable logical controllers and other electronic devices[J]. Fusion Engineering and Design, 2005, 75/79: 179-183. doi: 10.1016/j.fusengdes.2005.06.278
    [2] De Lorenzi A, Grando L, Bettanini G, et al. Magnetic compatibility of standard components for electrical installations: tests on low voltage circuit breakers and contactors[J]. Fusion Engineering and Design, 2005, 75/79: 33-39. doi: 10.1016/j.fusengdes.2005.06.267
    [3] Schanen J L, Guichon J M, Roudet J, et al. Impact of the physical layout of high-current rectifiers on current division and magnetic field using PEEC method[J]. IEEE Transactions on Industry Applications, 2010, 46(2): 892-900. doi: 10.1109/TIA.2010.2041083
    [4] 张晓鹰, 韩少斐, 杨文杰, 等. 兰州重离子治癌装置同步加速器切割磁铁研制[J]. 强激光与粒子束, 2015, 27:095101 doi: 10.11884/HPLPB201527.095101

    Zhang Xiaoying, Han Shaofei, Yang Wenjie, et al. Design of synchrotron septum magnet for heavy ion medical machine[J]. High Power Laser and Particle Beams, 2015, 27: 095101 doi: 10.11884/HPLPB201527.095101
    [5] Roccella R. Static and transient magnetic field maps at level B1 tokamak complex[R]. Technical Report No. QDFMW9, 2019.
    [6] 杨实, 任书庆, 杨海亮, 等. “闪光二号”5 T脉冲强磁场装置[J]. 强激光与粒子束, 2017, 29:065005 doi: 10.11884/HPLPB201729.160472

    Yang Shi, Ren Shuqing, Yang Hailiang, et al. 5 T pulsed magnetic field generator of the Flash-Ⅱ accelerator[J]. High Power Laser and Particle Beams, 2017, 29: 065005 doi: 10.11884/HPLPB201729.160472
    [7] Wang Rumeng, Yang Yong, Zhang Ming, et al. Finite element analysis of electromagnetic relay under the impact of disturbing magnetic field[J]. Fusion Engineering and Design, 2021, 167: 112344. doi: 10.1016/j.fusengdes.2021.112344
    [8] Tong Zikang, Braun W D, Rivas-Davila J M. Design and fabrication of three-dimensional printed air-core transformers for high-frequency power applications[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8472-8489. doi: 10.1109/TPEL.2020.2963976
    [9] Lu Yiwei, Yang Yong, Zhang Ming, et al. Improved square-coil configurations for homogeneous magnetic field generation[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6350-6360. doi: 10.1109/TIE.2021.3094496
    [10] Li Kui, Luo Chen, Niu Feng, et al. A new magnetic release design with high anti-interference capability[J]. IEEE Transactions on Magnetics, 2021, 57: 4001009.
    [11] 张志弘, 韩勤锴, 徐学平, 等. 基于保角变换与等效磁路法的永磁直驱发电机气隙磁场计算[J]. 电工技术学报, 2023, 38(3):703-711

    Zhang Zhihong, Han Qinkai, Xu Xueping, et al. Air gap magnetic field calculation of permanent magnet direct drive generator based on conformal mapping and magnetic equivalent circuit method[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 703-711
    [12] Song I S, Jo B W, Kim K C. Analysis of an IPMSM hybrid magnetic equivalent circuit[J]. Energies, 2021, 14: 5011. doi: 10.3390/en14165011
    [13] 李世奇, 佟文明, 贾建国, 等. 考虑磁桥非线性的内置式永磁同步电机空载电磁性能通用解析模型[J]. 电工技术学报, 2023, 38(6):1421-1432

    Li Shiqi, Tong Wenming, Jia Jianguo, et al. General analytical model of no-load electromagnetic performance of interior permanent magnet synchronous motors considering nonlinearity of magnetic bridges[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1421-1432
    [14] Rasmussen C B, Ritchie E. A magnetic equivalent circuit approach for predicting PM motor performance[C]//Proceedings of the Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting. 1997: 10-17.
    [15] Sewell P, Bradley K J, Clare J C, et al. Efficient dynamic models for induction machines[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 1999, 12(6): 449-464. doi: 10.1002/(SICI)1099-1204(199911/12)12:6<449::AID-JNM365>3.0.CO;2-W
    [16] 徐妲, 赵旭鸣, 林明耀, 等. 基于等效磁路法的轴向磁场磁通切换型永磁电机静态特性分析[J]. 电机与控制应用, 2017, 44(11):79-84 doi: 10.3969/j.issn.1673-6540.2017.11.014

    Xu Da, Zhao Xuming, Lin Mingyao, et al. Electromagnetic performance analysis of axial field flux-switching permanent magnet machine using equivalent magnetic circuit method[J]. Electric Machines & Control Application, 2017, 44(11): 79-84 doi: 10.3969/j.issn.1673-6540.2017.11.014
    [17] 黄允凯, 周涛. 基于等效磁路法的轴向永磁电机效率优化设计[J]. 电工技术学报, 2015, 30(2):73-79 doi: 10.3969/j.issn.1000-6753.2015.02.010

    Huang Yunkai, Zhou Tao. Efficiency optimization design of axial flux permanent magnet machines using magnetic equivalent circuit[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 73-79 doi: 10.3969/j.issn.1000-6753.2015.02.010
    [18] Amrhein M, Krein P T. 3-D magnetic equivalent circuit framework for modeling electromechanical devices[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 397-405. doi: 10.1109/TEC.2009.2016134
    [19] Li Nian, Zhu Jianguo, Lin Mingyao, et al. Analysis of axial field flux-switching memory machine based on 3-D magnetic equivalent circuit network considering magnetic hysteresis[J]. IEEE Transactions on Magnetics, 2019, 55: 7203104.
    [20] 郭凯凯, 郭有光. 磁通反向直线旋转永磁电机三维非线性等效磁路模型分析[J]. 电工技术学报, 2020, 35(20):4278-4286 doi: 10.19595/j.cnki.1000-6753.tces.191258

    Guo Kaikai, Guo Youguang. 3D nonlinear equivalent magnetic circuit model analysis of a flux reversal linear rotary permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4278-4286 doi: 10.19595/j.cnki.1000-6753.tces.191258
    [21] Watthewaduge G, Bilgin B. Reluctance mesh-based magnetic equivalent circuit modeling of switched reluctance motors for static and dynamic analysis[J]. IEEE Transactions on Transportation Electrification, 2022, 8(2): 2164-2176. doi: 10.1109/TTE.2021.3132885
    [22] Kim Y H, Jin C S, Kim S, et al. Analysis of hybrid stepping motor using 3D equivalent magnetic circuit network method based on trapezoidal element[J]. Journal of Applied Physics, 2002, 91(10): 8311-8313. doi: 10.1063/1.1456046
    [23] Amrhein M, Krein P T. Magnetic equivalent circuit modeling of induction machines design-oriented approach with extension to 3-D[C]//Proceedings of 2007 IEEE International Electric Machines & Drives Conference. 2007: 1557-1563.
    [24] Amrhein M. Induction machine performance improvements: design-oriented approaches[D]. Champaign: University of Illinois at Urbana-Champaign, 2007.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  92
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-08-21
  • 录用日期:  2023-08-21
  • 网络出版日期:  2023-08-26
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回