留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中性束注入系统加速极电源高压部件设计

张鸿淇 李志恒 马少翔 张明

张鸿淇, 李志恒, 马少翔, 等. 中性束注入系统加速极电源高压部件设计[J]. 强激光与粒子束, 2024, 36: 025011. doi: 10.11884/HPLPB202436.230159
引用本文: 张鸿淇, 李志恒, 马少翔, 等. 中性束注入系统加速极电源高压部件设计[J]. 强激光与粒子束, 2024, 36: 025011. doi: 10.11884/HPLPB202436.230159
Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011. doi: 10.11884/HPLPB202436.230159
Citation: Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011. doi: 10.11884/HPLPB202436.230159

中性束注入系统加速极电源高压部件设计

doi: 10.11884/HPLPB202436.230159
基金项目: 国家重点研发计划项目(2017YFE0300104); 国家自然科学基金项目(51821005)
详细信息
    作者简介:

    张鸿淇,hardyzane@hust.edu.cn

    通讯作者:

    马少翔,mashaoxiang@hust.edu.cn

  • 中图分类号: TM832

Design of high-voltage components for acceleration grid power supply of neutral beam injection system

  • 摘要: 基于负离子的中性束注入是未来大型托卡马克装置不可或缺的辅助加热方式。中性束系统中的加速极电源需要输出−200 kV电压和5 MW的功率,还经常面临负载短路和断路的特殊工况。过去对加速极电源的研究中缺少高压部分的方案设计,而电源中高压部件的绝缘设计是电源研制过程中必不可少的关键环节。据电源指标和特殊工况的特点,计算了电源高压部分的隔离升压变压器、高压整流器和高压滤波器的电路参数,并对这些部件基于油浸式绝缘进行了工程设计,通过有限元仿真分析进行了绝缘验证。仿真结果表明,这些部件中的电场强度最高为16.22 kV/mm,小于变压器油击穿场强并具有2倍的绝缘裕度。设计的高压部件结构可以满足电源的绝缘要求。
  • 图  1  加速极电源电路方案

    Figure  1.  Circuit scheme of the acceleration grid power supply

    图  2  逆变器输出相电流波形

    Figure  2.  Waveform of the inverter output phase current

    图  3  隔离升压变压器主体电磁结构示意图

    Figure  3.  Schematic diagram of the electromagnetic structure of the step-up transformer

    图  4  主绝缘仿真计算模型

    Figure  4.  Computational model for the main insulation simulation

    图  5  雷电冲击下隔离升压变压器电场强度分布

    Figure  5.  Electric field distribution of step-up transformer under the lightning impulse

    图  6  二极管缓冲电路

    Figure  6.  Snubber circuits for the diodes

    图  7  整流器结构设计

    Figure  7.  Structure design of the rectifier

    图  8  隔离升压变压器副边等效电路

    Figure  8.  Equivalent circuit of the secondary side of the step-up transformer

    图  9  整流器电场强度有限元计算结果

    Figure  9.  Finite element calculation results on the electric field strength of the rectifier

    图  10  高压滤波器等效电路

    Figure  10.  Equivalent circuit of the high-voltage filter

    图  11  高压滤波器结构设计

    Figure  11.  Structural design of the high-voltage filter

    图  12  滤波器电场强度仿真结果

    Figure  12.  Simulated electric field strength of the filter

    表  1  加速极电源的主要设计指标

    Table  1.   Main design indexes of the acceleration grid power supply

    input voltage/kV rated output voltage/kV output voltage ripple/% rated output current/A DC-bus voltage/V pulse width time/s
    10 (50 Hz) −200 ±5 25 ±2500 3600
    peak fault voltage/kV short-circuit peak current/A fault energy/J switch-off time/μs restart time/ms breakdown frequency/h−1
    −250 3000 <10 <100 20 200
    下载: 导出CSV

    表  2  隔离升压变压器的主要电磁设计结果

    Table  2.   Main electromagnetic design results for the step-up transformer

    silicon steel
    sheet
    sectional area of
    the core column/cm2
    core diameter/mm unit loss of
    iron core/(W·kg−1)
    magnetic flux
    density/T
    core weight/kg single-turn
    voltage/V
    B27R095742.63202.651.2457059.39
    material of
    winding wire
    primary side
    turns
    secondary side
    turns
    primary-side
    winding
    secondary-side
    winding
    primary-winding
    current
    density/(A·mm−2)
    secondary-winding
    current
    density/(A·mm−2)
    oxygen-free copper591387helix typeinner screen continuous type2.531.74
    下载: 导出CSV

    表  3  滤波器RfCf的元件组合及配置

    Table  3.   Component combination and configuration of Rf and Cf in the filter

    Cf /nF operating voltage/kV component combination number of components
    300 360 6 series 12 parallel 72
    Rf operating voltage/kV component combination number of components
    68 220 4 series 10 parallel 40
    下载: 导出CSV
  • [1] 朱士尧. 核聚变原理[M]. 合肥: 中国科学技术大学出版社, 1992

    Zhu Shiyao. Principles of fusion energy[M]. Hefei: University of Science and Technology of China Press, 1992
    [2] Imai T, Kobayashi N, Temkin R, et al. ITER R&D: auxiliary systems: electron cyclotron heating and current drive system[J]. Fusion Engineering and Design, 2001, 55(2/3): 281-289.
    [3] Van Zeeland M A, Heidbrink W W, Nazikian R, et al. Reversed shear Alfvén eigenmode stabilization by localized electron cyclotron heating[J]. Plasma Physics and Controlled Fusion, 2008, 50: 035009. doi: 10.1088/0741-3335/50/3/035009
    [4] 盛鹏, 胡纯栋, 宋士花, 等. EAST中性束注入控制系统设计[J]. 强激光与粒子束, 2014, 26:104003 doi: 10.11884/HPLPB201426.104003

    Sheng Peng, Hu Chundong, Song Shihua, et al. Design of control system of neutral beam injection on EAST[J]. High Power Laser and Particle Beams, 2014, 26: 104003 doi: 10.11884/HPLPB201426.104003
    [5] 王海田, 李格, 曹亮. EAST中性束注入器用高压缓冲器分析[J]. 强激光与粒子束, 2010, 22(6):1373-1377 doi: 10.3788/HPLPB20102206.1373

    Wang Haitian, Li Ge, Cao Liang. Snubber for EAST neutral beam injector[J]. High Power Laser and Particle Beams, 2010, 22(6): 1373-1377 doi: 10.3788/HPLPB20102206.1373
    [6] Liu Zhimin, Liu Xiaoning, Hu Chundong, et al. The power supply system of ion source for NBI[J]. Plasma Science and Technology, 2005, 7(3): 2819-2821. doi: 10.1088/1009-0630/7/3/007
    [7] Vila R, Hodgson E R. Dielectric loss during irradiation of a candidate ITER NBI RF ion-source insulator[J]. Journal of Nuclear Materials, 2011, 417(1/3): 787-789.
    [8] Zhang Hongqi, Zhu Bangyou, Ma Shaoxiang, et al. DC active power filter based on model predictive control for DC bus overvoltage suppression of accelerator grid power supply[J]. Plasma Science and Technology, 2023, 25: 064001. doi: 10.1088/2058-6272/acb1a4
    [9] Bigi M, De Lorenzi A, Grando L, et al. A model for electrical fast transient analyses of the ITER NBI power supplies and the MAMuG accelerator[J]. Fusion Engineering and Design, 2009, 84(2/6): 446-450.
    [10] 毛晓惠, 李青, 王雅丽, 等. 基于脉冲调制技术的LHCD大功率阴极高压电源[J]. 强激光与粒子束, 2016, 28:015004 doi: 10.11884/HPLPB201628.015004

    Mao Xiaohui, Li Qing, Wang Yali, et al. LHCD cathode high voltage power supply based on pulse step modulator[J]. High Power Laser and Particle Beams, 2016, 28: 015004 doi: 10.11884/HPLPB201628.015004
    [11] 芮军辉, 高宗球, 郭斐, 等. 低杂波电流驱动阴极高压电源系统的优化与实现[J]. 强激光与粒子束, 2021, 33:026002 doi: 10.11884/HPLPB202133.200152

    Rui Junhui, Gao Zongqiu, Guo Fei, et al. Optimization and realization of low hybrid current drive cathode high voltage power supply system[J]. High Power Laser and Particle Beams, 2021, 33: 026002 doi: 10.11884/HPLPB202133.200152
    [12] 夏于洋, 李青, 毛晓惠. PSM高压电源干式变压器的热分析计算[J]. 强激光与粒子束, 2020, 32:025008 doi: 10.11884/HPLPB202032.190294

    Xia Yuyang, Li Qing, Mao Xiaohui. Thermal analysis calculation of dry-type transformer in PSM high voltage power supply[J]. High Power Laser and Particle Beams, 2020, 32: 025008 doi: 10.11884/HPLPB202032.190294
    [13] Sotnikov O, Ivanov A, Belchenko Y, et al. Development of high-voltage negative ion based neutral beam injector for fusion devices[J]. Nuclear Fusion, 2021, 61: 116017. doi: 10.1088/1741-4326/ac175a
    [14] Zhang Xueliang, Zhang Ming, Ma Shaoxiang, et al. Design of acceleration grid power supply for CFETR negative-ion-based neutral beam injection prototype[J]. Fusion Engineering and Design, 2019, 146: 2592-2597. doi: 10.1016/j.fusengdes.2019.04.050
    [15] Wang Dongyu, Zhang Ming, Ma Shaoxiang, et al. Design and control of the accelerator grid power supply-conversion system applied to CFETR N-NBI prototype[J]. Plasma Science and Technology, 2020, 22: 085601. doi: 10.1088/2058-6272/ab8d9c
    [16] Zhang Ming, Ma Xiao, Ma Shaoxiang, et al. Design of the control system of acceleration grid power supply for CFETR N-NBI prototype[J]. Fusion Engineering and Design, 2019, 146: 1712-1715. doi: 10.1016/j.fusengdes.2019.03.022
    [17] 何开心, 李青, 夏于洋, 等. 基于200 kV/15 A逆变型直流高压电源的控制策略[J]. 强激光与粒子束, 2023, 35:066002 doi: 10.11884/HPLPB202335.220355

    He Kaixin, Li Qing, Xia Yuyang, et al. Direct current high voltage power control strategy based on 200 kV/15 A inverter[J]. High Power Laser and Particle Beams, 2023, 35: 066002 doi: 10.11884/HPLPB202335.220355
    [18] 张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31:040012 doi: 10.11884/HPLPB201931.180265

    Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012 doi: 10.11884/HPLPB201931.180265
    [19] Watanabe K, Yamanaka H, Maejima T, et al. Development of a DC −1 MV insulating transformer for neutral beam injectors[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(2): 214-220. doi: 10.1002/tee.22368
    [20] Takahashi A, Tanaka T, Fujita H, et al. Development of –1 MV DC filter and high-voltage DC measurement systems for ITER NBI[J]. Electrical Engineering in Japan, 2018, 204(3): 41-52. doi: 10.1002/eej.23101
    [21] Boldrin M, Dalla Palma M, Milani F. Design issues of the High Voltage platform and feedthrough for the ITER NBI Ion Source[J]. Fusion Engineering and Design, 2009, 84(2/6): 470-474.
    [22] Tobari H, Kashiwagi M, Watanabe K, et al. Progress on design and manufacturing of dc ultra-high voltage component for ITER NBI[J]. Fusion Engineering and Design, 2017, 123: 309-312. doi: 10.1016/j.fusengdes.2017.05.017
    [23] Tobari H, Watanabe K, Kashiwagi M, et al. DC ultrahigh voltage insulation technology for 1 MV power supply system for fusion application[J]. IEEE Transactions on Plasma Science, 2017, 45(1): 162-169. doi: 10.1109/TPS.2016.2632762
    [24] 陈曦, 王瑾, 肖岚. 用于高压高频整流的二极管串联均压问题[J]. 电工技术学报, 2012, 27(10):207-214 doi: 10.19595/j.cnki.1000-6753.tces.2012.10.030

    Chen Xi, Wang Jin, Xiao Lan. Research on the voltage sharing in series coupled diodes for high voltage and high frequency rectifier applications[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 207-214 doi: 10.19595/j.cnki.1000-6753.tces.2012.10.030
    [25] 王栋煜. CFETR N-NBI加速极电源功率变换级关键技术研究[D]. 武汉: 华中科技大学, 2021: 43-44

    Wang Dongyu. Research on key technologies of the acceleration grid power supply-conversion system of CFETR N-NBI[D]. Wuhan: Huazhong University of Science and Technology, 2021: 43-44
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  80
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-30
  • 修回日期:  2023-10-17
  • 录用日期:  2023-10-17
  • 网络出版日期:  2023-10-23
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回