留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

15 nm Bulk nFinFET器件性能研究及参数优化

侯天昊 范杰清 赵强 张芳 郝建红 董志伟

侯天昊, 范杰清, 赵强, 等. 15 nm Bulk nFinFET器件性能研究及参数优化[J]. 强激光与粒子束, 2024, 36: 031003. doi: 10.11884/HPLPB202436.230169
引用本文: 侯天昊, 范杰清, 赵强, 等. 15 nm Bulk nFinFET器件性能研究及参数优化[J]. 强激光与粒子束, 2024, 36: 031003. doi: 10.11884/HPLPB202436.230169
Hou Tianhao, Fan Jieqing, Zhao Qiang, et al. Performance research and parameter optimization of 15 nm Bulk nFinFET device[J]. High Power Laser and Particle Beams, 2024, 36: 031003. doi: 10.11884/HPLPB202436.230169
Citation: Hou Tianhao, Fan Jieqing, Zhao Qiang, et al. Performance research and parameter optimization of 15 nm Bulk nFinFET device[J]. High Power Laser and Particle Beams, 2024, 36: 031003. doi: 10.11884/HPLPB202436.230169

15 nm Bulk nFinFET器件性能研究及参数优化

doi: 10.11884/HPLPB202436.230169
详细信息
    作者简介:

    侯天昊,houtianhao97@163.com

    通讯作者:

    赵 强,zhaoq@iapcm.ac.cn

  • 中图分类号: TN386.1

Performance research and parameter optimization of 15 nm Bulk nFinFET device

  • 摘要: 为研究Bulk FinFET工作时基本结构参数、器件温度和栅极材料对其性能的影响,建立了一个15 nm n型Bulk FinFET器件模型,仿真分析了不同栅长、鳍宽、鳍高、沟道掺杂浓度、器件工作温度、栅极材料对器件性能的影响,发现增长栅长、降低鳍宽和增加鳍高有助于抑制短沟道效应;1×1017 cm−3以下的低沟道掺杂浓度对器件特性影响不大,但高掺杂会使器件失效;器件工作温度的升高会导致器件性能的下降;采用高K介质材料作为栅极器件性能优于传统材料SiO2
  • 图  1  FinFET模型示意图

    Figure  1.  Schematic diagram of FinFET model

    图  2  添加量子修正项与不添加量子修正项的Id-Vg曲线对比图

    Figure  2.  Comparison of Id-Vg curves with and without quantum correction items

    图  3  不同栅长下Bulk FinFET的Id-Vg曲线

    Figure  3.  Id-Vg curves with different gate lengths

    图  4  不同栅长下的Id-Vd曲线

    Figure  4.  Id-Vd curves with different gate lengths

    图  5  不同鳍宽下的Id-Vg曲线

    Figure  5.  Id-Vg curves with different fin widths (Vd = 0.05 V)

    图  6  不同鳍宽下的Id-Vd曲线

    Figure  6.  Id-Vd curves with different fin widths (Vg = 0.8 V)

    图  7  不同鳍高下的Id-Vg曲线

    Figure  7.  Id-Vg curves with different fin heights (Vd = 0.05 V)

    图  8  不同鳍高下的Id-Vd曲线

    Figure  8.  Id-Vd curves with different fin heights (Vg = 0.8 V)

    图  9  掺杂示意图

    Figure  9.  Schematic diagram of doping

    图  10  不同沟道掺杂浓度下的Id-Vg曲线

    Figure  10.  Id-Vg curves with different channel doping concentrations

    图  11  不同沟道掺杂浓度下的Id-Vd曲线

    Figure  11.  Id-Vd curves with different channel doping concentrations

    图  12  不同器件温度下的Id-Vg曲线

    Figure  12.  Id-Vg curves with different device temperatures

    图  13  栅极氧化层材料示意图

    Figure  13.  Schematic of gate oxide layer material

    图  14  不同栅极材料下的Id-Vg曲线

    Figure  14.  Id-Vg curves with different gate materials

    表  1  不同栅长下VT、SS、DIBL

    Table  1.   VT, SS and DIBL under different gate lengths

    gate length/nm VT/V SS/mV DIBL/(mV·V−1)
    10 0.3058 72.0845 20.53
    15 0.3041 67.6268 18.55
    20 0.3082 65.1960 12.57
    25 0.3117 64.0744 0.92
    30 0.3149 63.4691 0.80
    下载: 导出CSV

    表  2  不同鳍宽下VT、SS、DIBL

    Table  2.   VT, SS and DIBL under different fin widths

    fin width/nm VT/V SS/mV DIBL/(mV·V−1)
    1 0.3041 67.6269 5.42
    3 0.3178 75.1745 10.84
    5 0.3241 82.8697 18.53
    7 0.3306 89.7392 25.62
    下载: 导出CSV

    表  3  不同鳍高下VT、SS、DIBL

    Table  3.   VT, SS and DIBL under different fin heights

    fin height/nm VT/V SS/mV DIBL/(mV·V−1)
    5 0.3045 70.5220 63.03
    8 0.3051 69.0909 61.46
    10 0.3041 67.6269 59.80
    15 0.2983 65.4408 57.38
    18 0.2937 67.1448 54.73
    下载: 导出CSV

    表  4  不同沟道掺杂浓度下VT、SS、DIBL

    Table  4.   VT, SS and DIBL under different channel doping concentrations

    channel doping
    concentration/cm−3
    VT/V SS/mV DIBL/(mV·V−1)
    1×1013 0.3042 67.5652 21.19
    1×1015 0.3041 67.5704 21.33
    1×1017 0.3041 67.6269 19.70
    1×1019 0.3166 67.6392 44.29
    1×1021 0.6179 76.4825 97.29
    下载: 导出CSV

    表  5  不同器件温度下VT、SS、DIBL

    Table  5.   VT, SS and DIBL under different device temperatures

    device temperature/K VT/V SS/mV DIBL/(mV·V−1)
    300 0.3041 67.6269 18.53
    373 0.2620 86.6025 23.25
    425 0.2282 101.2728 27.31
    下载: 导出CSV

    表  6  不同栅极材料下VT、SS、DIBL

    Table  6.   VT, SS and DIBL under different gate materials

    gate materials gmax/mS SS/mV VT/V DIBL/(mV·V−1)
    SiO2 8.87×10−6 65.34 0.2811 22.3
    Si3N4 9.19×10−6 64.81 0.2722 18.4
    HfO2 9.54×10−6 64.39 0.2736 6.4
    下载: 导出CSV
  • [1] 缪晔辰. 鳍式场效应晶体管的有利特性及目前的研究方向[J]. 科技视界, 2021(15): 98-99

    Miao Yechen. The advantages of fin FET and the current research direction[J]. Science & Technology Vision, 2021(15): 98-99)
    [2] Hisamoto D, Lee W C, Kedzierski J, et al. FinFET—a self-aligned double-gate MOSFET scalable to 20 nm[J]. IEEE Transactions on Electron Devices, 2000, 47(12): 2320-2325. doi: 10.1109/16.887014
    [3] 马伟彬. FinFET器件技术简介[J]. 科技展望, 2016, 26(16):104-105

    Ma Weibin. Introduction to FinFET device technology[J]. Science and Technology, 2016, 26(16): 104-105
    [4] 单婵. 无结FinFET器件三维仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2014: 26-30

    Shan Chan. Three dimensional simulation of junctionless FinFET[D]. Harbin: Harbin Engineering University, 2014: 26-30
    [5] Gaynor B D, Hassoun S. Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design[J]. IEEE Transactions on Electron Devices, 2014, 61(8): 2738-2744. doi: 10.1109/TED.2014.2331190
    [6] Falk H. Prolog to: leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits[J]. Proceedings of the IEEE, 2003, 91(2): 303-304. doi: 10.1109/JPROC.2003.808154
    [7] 李亚鹏, 李颖峰, 贺志荣, 等. 金属与半导体肖特基接触势垒模型及其载流子传输机制的研究进展[J]. 材料导报, 2017, 31(3):57-62

    Li Yapeng, Li Yingfeng, He Zhirong, et al. Progress of Schottky contact model and carrier transport mechanism at the interface between metal and semiconductor[J]. Materials Reports, 2017, 31(3): 57-62
    [8] Al Imam S. Simulation of a 2D pn junction in silicon thin film incorporating quantum transport for carriers[D]. Montreal: Concordia University, 2006.
    [9] Appel J. Electron-electron scattering and transport phenomena in nonpolar semiconductors[J]. Physical Review, 1961, 122(6): 1760-1772. doi: 10.1103/PhysRev.122.1760
    [10] Chen K J, Häberlen O, Lidow A, et al. GaN-on-Si power technology: devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. doi: 10.1109/TED.2017.2657579
    [11] Boukortt N E I, Lenka T R, Patanè S, et al. Effects of varying the fin width, fin height, gate dielectric material, and gate length on the DC and RF performance of a 14-nm SOI FinFET structure[J]. Electronics, 2022, 11: 91.
    [12] 胡从振. SOI FinFET辐射效应研究[D]. 西安: 西安电子科技大学, 2019: 42

    Hu Congzhen. Study on reliability of irradiation effect of SOI FinFET[D]. Xi’an: Xidian University, 2019: 42
    [13] 吕英波. 声子散射对载流子输运特性的影响[J]. 大学物理, 2017, 36(12):10-14

    Lv Yingbo. Effect of phonon scattering on carrier transport characteristics[J]. College Physics, 2017, 36(12): 10-14
    [14] Taur Y, Ning T H. Fundamentals of modern VLSI devices[M]. New York: Cambridge University Press, 1998.
    [15] Choi J H, Murthy J, Roy K. The effect of process variation on device temperature in FinFET circuits[C]. 2007 IEEE/ACM International Conference on Computer-Aided Design. 2007: 747-751.
    [16] Venkateswarlu S, Sudarsanan A, Singh S G, et al. Ambient temperature-induced device self-heating effects on multi-Fin Si n-FinFET performance[J]. IEEE Transactions on Electron Devices, 2018, 65(7): 2721-2728. doi: 10.1109/TED.2018.2834979
    [17] 曾庆王, 许会芳. 一种新型双材料双栅的MOSFET器件的性能研究[J]. 安徽理工大学学报(自然科学版), 2021, 41(6):61-66

    Zeng Qingwang, Xu Huifang. Research on the performance of a novel dual material double gate MOSFET[J]. Journal of Anhui University of Science and Technology (Natural Science), 2021, 41(6): 61-66
    [18] Yin Longxiang, Du Gang, Liu Xiaoyan. Impact of ambient temperature on the self-heating effects in FinFETs[J]. Journal of Semiconductors, 2018, 39: 094011. doi: 10.1088/1674-4926/39/9/094011
    [19] 黄宁, 刘伟景, 李清华, 等. 多栅FinFET性能研究及参数优化[J]. 电子工业专用设备, 2019, 48(5):61-67

    Huang Ning, Liu Weijing, Li Qinghua, et al. Research and optimization on multi-gate FinFET[J]. Equipment for Electronic Products Manufacturing, 2019, 48(5): 61-67
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  43
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-12-15
  • 录用日期:  2023-12-15
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回