留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HEPS增强器凸轨磁铁脉冲电源的设计与实现

王冠文 陈锦晖 霍丽华 刘鹏 王磊 史晓蕾 段哲 施华 吴官健 翟心哲

王冠文, 陈锦晖, 霍丽华, 等. HEPS增强器凸轨磁铁脉冲电源的设计与实现[J]. 强激光与粒子束, 2024, 36: 025014. doi: 10.11884/HPLPB202436.230195
引用本文: 王冠文, 陈锦晖, 霍丽华, 等. HEPS增强器凸轨磁铁脉冲电源的设计与实现[J]. 强激光与粒子束, 2024, 36: 025014. doi: 10.11884/HPLPB202436.230195
Wang Guanwen, Chen JinHui, Huo Lihua, et al. Design and implementation of HEPS booster bumper pulser[J]. High Power Laser and Particle Beams, 2024, 36: 025014. doi: 10.11884/HPLPB202436.230195
Citation: Wang Guanwen, Chen JinHui, Huo Lihua, et al. Design and implementation of HEPS booster bumper pulser[J]. High Power Laser and Particle Beams, 2024, 36: 025014. doi: 10.11884/HPLPB202436.230195

HEPS增强器凸轨磁铁脉冲电源的设计与实现

doi: 10.11884/HPLPB202436.230195
基金项目: 国家自然科学基金项目(11675194)
详细信息
    作者简介:

    王冠文,gwwang@ihep.ac.cn

  • 中图分类号: TN78

Design and implementation of HEPS booster bumper pulser

  • 摘要: 高能同步辐射光源(HEPS)是国内首台第四代同步辐射光源,包括一个储存环、一个增强器以及一个直线加速器。作为典型的低发射度储存环(LER),其动力学孔径远小于物理孔径,对此选择了一种新颖的在轴置换注入方案。其中,增强器负责实现束流从500 MeV到6 GeV的升能。为了降低增强器引出冲击磁铁的冲击强度,在引出环节之前使用4台凸轨磁铁来辅助冲击磁铁完成这一动作。凸轨磁铁磁场波形要求底宽小于1 ms的半正弦波。根据仿真以及测试结果,采用绝缘栅双极型晶体管(IGBT)串联快恢复二极管的经典LC谐振电路拓扑。此外,设计了能量回收支路,来降低电容在充电过程中功率损耗以及对输出脉冲电流波形的影响。目前,已完成脉冲电源样机的研制与测试,各项结果表明,该脉冲电源能够满足高能光源增强器高能引出系统的各项要求。
  • 图  1  LCR谐振电路模型

    Figure  1.  LCR resonance circuit

    图  2  R1=50 Ω条件下基础电路仿真模型

    Figure  2.  Fundamental circuit Simulation at R1=50 Ω

    图  3  能量回收模型仿真

    Figure  3.  Energy recovery simulation

    图  4  实验电路测试波形

    Figure  4.  Test waveform

    图  5  电路原理图

    Figure  5.  Final circuit schematic

    图  6  性能验收测试波形

    Figure  6.  Performance test

    表  1  凸轨磁铁脉冲电源设计参数

    Table  1.   Design parameters of the pulsed power supply

    output pulse bottom
    width@3%/ms
    inductance of
    bumper magnet/mH
    inductance of
    cable/µH
    peak
    current/A
    flatness of
    peak current/ns
    stability of
    peak current
    uniformity of
    waveform
    frequency/
    Hz
    ≤1 0.66 ≤40 ≥212.5 ≥10.3 ±0.3% 5% 50
    下载: 导出CSV
  • [1] 焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束, 2022, 34:104002 doi: 10.11884/HPLPB202234.220080

    Jiao Yi, Pan Weimin. High Energy Photon Source[J]. High Power Laser and Particle Beams, 2022, 34: 104002 doi: 10.11884/HPLPB202234.220080
    [2] Xu G, Cui X H, Duan Z, et al. Progress of lattice design and physics studies on the High Energy Photon Source[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 1375-1378.
    [3] Xu Gang, Chen Jinhui, Duan Zhe, et al. On-axis beam accumulation enabled by phase adjustment of a double-frequency RF system for diffraction-limited storage rings[C]//Proceedings of IPAC2016. 2016: 2032-2035.
    [4] Chen J H, Shi H, Wang L, et al. Strip-line kicker and fast pulser R&D for the HEPS on-axis injection system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 920: 1-6.
    [5] Chen J H, Shi H, Wang L. Fast kicker and pulser R&D for the HEPS on-axis injection system[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 2846-2849.
    [6] Li J Y, Dong H Y, Duan Z, et al. Conceptual design of HEPS injector[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 1394-1397.
    [7] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [8] 王震宇. 电路分析[M]. 北京: 科学出版社, 2006

    Wang Zhenyu. Circuit analysis[M]. Beijing: Science Press, 2006
    [9] 清华大学电力系高电压技术专业. 冲击大电流技术[M]. 北京: 科学出版社, 1978

    High Voltage Technology Major in the Department of Electric Power at Tsinghua University. High impulse current technology[M]. Beijing: Science Press, 1978
    [10] 游海龙, 张金力, 王鹏, 等. 电子线路EDA上机实验指导: 基于Cadence/PSpice 17[M]. 西安: 西安电子科技大学出版社, 2019

    You Hailong, Zhang Jinli, Wang Peng, et al. Electronic circuit EDA computer experiment guidance: based on Cadence/PSpice 17 [M]. Xi’an: Xidian University Press, 2019
    [11] 张东辉, 毛鹏, 徐向宇. PSpice元器件模型建立及应用[M]. 北京: 机械工业出版社, 2017

    Zhang Donghui, Mao Peng, Xu Xiangyu. PSpice component model resume and application[M]. Beijing: China Machine Press, 2017
    [12] 乔汉青, 樊亚军, 夏文锋, 等. 时基反馈控制的Tesla变压器初级电源[J]. 强激光与粒子束, 2018, 30:085005 doi: 10.11884/HPLPB201830.170526

    Qiao Hanqing, Fan Yajun, Xia Wenfeng, et al. Time-base feedback controlled primary source of Tesla transformer[J]. High Power Laser and Particle Beams, 2018, 30: 085005 doi: 10.11884/HPLPB201830.170526
    [13] 许建军, 常安碧, 夏世维, 等. 新型高功率高重复频率脉冲电源研制[J]. 高电压技术, 2003, 29(7):43-44,53

    Xu Jianjun, Chang Anbi, Xia Shiwei, et al. Development of new type high power and high repetition rate pulse power supply[J]. High Voltage Engineering, 2003, 29(7): 43-44,53
    [14] Wang Limin, Su Jiancang, Peng Jianchang, et al. Applications of series resonant power supply in Tesla transformer[C]//Proceedings of the 17th International Conference on High Power Particle Beams (BEAMS). 2008: 1-3.
    [15] Liu Peng, Chen Jinhui, Wang Guanwen. A high stability high voltage power supply design for HEPS injection system[J]. Radiation Detection Technology and Methods, 2021, 5(4): 564-569. doi: 10.1007/s41605-021-00280-7
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  44
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-26
  • 修回日期:  2024-01-08
  • 录用日期:  2024-01-08
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回