留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有快前沿的固态Marx电源的研究

李东升 李孜 王永刚 姜松 饶俊峰

李东升, 李孜, 王永刚, 等. 具有快前沿的固态Marx电源的研究[J]. 强激光与粒子束, 2024, 36: 025003. doi: 10.11884/HPLPB202436.230197
引用本文: 李东升, 李孜, 王永刚, 等. 具有快前沿的固态Marx电源的研究[J]. 强激光与粒子束, 2024, 36: 025003. doi: 10.11884/HPLPB202436.230197
Li Dongsheng, Li Zi, Wang Yonggang, et al. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36: 025003. doi: 10.11884/HPLPB202436.230197
Citation: Li Dongsheng, Li Zi, Wang Yonggang, et al. Research on solid state Marx power supply with fast front[J]. High Power Laser and Particle Beams, 2024, 36: 025003. doi: 10.11884/HPLPB202436.230197

具有快前沿的固态Marx电源的研究

doi: 10.11884/HPLPB202436.230197
基金项目: 国家自然科学基金项目(12205192);国家重点研发计划项目(2019YFC0119102)
详细信息
    作者简介:

    李东升,1125503759@qq.com

    通讯作者:

    饶俊峰,raojf@sibet.ac.cn

  • 中图分类号: TN78

Research on solid state Marx power supply with fast front

  • 摘要: 纳秒脉冲电场消融要求在100 Ω负载上产生数千伏的纳秒脉冲,加快脉冲前沿有利于获得更窄的纳秒脉冲。提出了一种具有快速前沿的固态Marx发生器,在每级电路中插入一个电感,并且让放电管和充电管同时导通数十纳秒,等放电管完全开通后,关断充电管,对负载进行放电,以消除放电管和放电回路杂散电感对脉冲前沿的限制,获得具有快前沿的高压脉冲。搭建了32级Marx样机,实验中通过调节直通时间,在100 Ω的低阻负载上获得了电压上升沿35 ns、脉宽800 ns、电流186 A的高压脉冲。对比并分析了充电管和放电管直通时间对上升沿的影响,发现直通时间越长,脉冲电流的前沿越快。输出端的峰值电流最大可达186 A。表明该脉冲电压源可以有效地提高电流的输出,提高系统带载能力。该方案相比于传统的改进方法,提高了系统抗干扰能力的同时,也减少了所使用开关管的数量,降低了脉冲电源的成本。
  • 图  1  快前沿的固态Marx电源的主电路图

    Figure  1.  Main circuit of the proposed solid-state Marx generator with fast leading edges

    图  2  串心磁环同步驱动原理图

    Figure  2.  Structure diagram of drive circuit

    图  3  门级的驱动信号时序图

    Figure  3.  Gate level driving signal and phase relationship

    图  4  仿真原理图

    Figure  4.  Schematic diagram of circuit simulation

    图  5  输出电压上升沿仿真结果

    Figure  5.  Simulation results of output voltage rising edge

    图  6  直通不同时间电路内的电流仿真对比图

    Figure  6.  Comparison of current simulation in a direct circuit with different time intervals

    图  7  测试电路实物图

    Figure  7.  Photo of the test system

    图  8  空载输出电压波形

    Figure  8.  Voltage waveform with open circuit

    图  9  重复频率1 kHz时的电压波形

    Figure  9.  Voltage waveform with 1 kHz repetition rate

    图  10  不同直通时间对上升沿的影响实验结果

    Figure  10.  Experimental results of the influence of different straight-through time on rising edge

    图  11  阻性负载上的输出电流

    Figure  11.  Output current on resistive load

    图  12  不同 Marx支路的电容电压

    Figure  12.  Capacitor voltage for different Marx branches

  • [1] 理查斯·L·卡斯尔. 采用固态开关的高压脉冲电源: 101124714A[P]. 2008-02-13

    Richards S L. High voltage pulsed power supply using solid state switches: 101124714A[P]. 2008-02-13
    [2] Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [3] Liu Kefu, Qiu Jian, Wu Yifan, et al. An all solid-state pulsed power generator based on Marx generator[C]//Proceedings of 16th IEEE International Pulsed Power Conference. 2007: 720-723.
    [4] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [5] 江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22(3):561-564 doi: 10.3788/HPLPB20102203.0561

    Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(3): 561-564 doi: 10.3788/HPLPB20102203.0561
    [6] Wei Linsheng, Yuan Dingkun, Zhang Yafang, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104: 61-64. doi: 10.1016/j.vacuum.2014.01.009
    [7] 曹鹤飞, 孙永卫, 原青云, 等. 航天器背面接地介质材料等离子体充电研究[J]. 强激光与粒子束, 2015, 27:103204 doi: 10.11884/HPLPB201527.103204

    Cao Hefei, Sun Yongwei, Yuan Qingyun, et al. Research on surface charging of back grounded dielectric material of spacecraft[J]. High Power Laser and Particle Beams, 2015, 27: 103204 doi: 10.11884/HPLPB201527.103204
    [8] 方兴东, 关志成, 王黎明, 等. 高压脉冲放电在水处理中的应用及发展[J]. 高电压技术, 2000, 26(1):29-31

    Fang Xingdong, Guan Zhicheng, Wang Liming, et al. Research on treatment of wastewater by high voltage pulse discharge[J]. High Voltage Engineering, 2000, 26(1): 29-31
    [9] Redondo L M, Kandratsyeu A, Barnes M J. Marx generator prototype for kicker magnets based on SiC MOSFETs[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3334-3339. doi: 10.1109/TPS.2018.2808194
    [10] Wang Yifan, Liu Kefu, Qiu Jian, et al. A stage-stage paralleled topology of all-solid-state Marx generator for high current[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4488-4494. doi: 10.1109/TPS.2019.2914313
    [11] 吕潇宇. 微波辐照煤焦低温等离子体的形成机理[D]. 太原: 太原理工大学, 2022

    Lv Xiaoyu. The Formation mechanism of low-temperature plasma of coal char irradiated by microwave[D]. Taiyuan: Taiyuan University of Technology, 2022
    [12] 吴启翔, 陈永刚, 龚立娇, 等. 纳秒脉冲电场肿瘤消融关键技术研究综述[J]. 中国医疗设备, 2023, 38(5):36-43

    Wu Qixiang, Chen Yonggang, Gong Lijiao, et al. Review of key techniques for nanosecond pulsed electric field of tumor ablation[J]. China Medical Devices, 2023, 38(5): 36-43
    [13] 马振宏. 纳秒脉冲电场肿瘤消融实验研究[D]. 杭州: 浙江大学, 2020

    Ma Zhenhong. Experimental study on tumor ablation using nanosecond pulsed electric field[D]. Hangzhou: Zhejiang University, 2020
    [14] Yang W, Wu Y H, Yin Dong, et al. Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields[J]. Technology in Cancer Research & Treatment, 2011, 10(3): 281-286.
    [15] Chen Xinhua, Kolb J F, Swanson R J, et al. Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields[J]. Pigment Cell & Melanoma Research, 2010, 23(4): 554-563.
    [16] Joshi R P, Schoenbach K H. Bioelectric effects of intense ultrashort pulses[J]. Critical ReviewsTM in Biomedical Engineering, 2010, 38(3): 255-304. doi: 10.1615/CritRevBiomedEng.v38.i3.20
    [17] 伍友成, 刘高旻, 戴文峰, 等. 轻小型高电压大电流脉冲电源研制[J]. 高电压技术, 2018, 44(9):3016-3021

    Wu Youcheng, Liu Gaomin, Dai Wenfeng, et al. Design of small-size high voltage and large current pulsed power source[J]. High Voltage Engineering, 2018, 44(9): 3016-3021
    [18] Chen Jie, Zhang Ruobing, Xiao Jianfu, et al. Influence of pulse rise time on the inactivation of staphylococcus aureus by pulsed electric fields[J]. IEEE Transactions on Plasma Science, 2010, 38(8): 1935-1941. doi: 10.1109/TPS.2010.2050785
    [19] 饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32:055001 doi: 10.11884/HPLPB202032.190472

    Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001 doi: 10.11884/HPLPB202032.190472
    [20] Dos Santos K P, Neto T R F, Cruz C M T. Voltage impulse generator using boost converter array applied in electrical grounding systems[C]//Proceedings of the IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC). 2015: 1-5.
    [21] Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [22] Barnes M J, Wait G D, Figley C B. A FET based frequency and duty factor agile 6 kV pulse generator[C]//Proceedings of the 21st International Power Modulator Symposium Conference. 1994: 97-100.
  • 加载中
图(12)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  59
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-11-09
  • 录用日期:  2023-11-06
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回