留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光对宽能域碳离子在双组份等离子体中阻止本领的影响

伊合 王桂秋 王时萱 高鑫 刘大军

伊合, 王桂秋, 王时萱, 等. 激光对宽能域碳离子在双组份等离子体中阻止本领的影响[J]. 强激光与粒子束, 2024, 36: 034001. doi: 10.11884/HPLPB202436.230200
引用本文: 伊合, 王桂秋, 王时萱, 等. 激光对宽能域碳离子在双组份等离子体中阻止本领的影响[J]. 强激光与粒子束, 2024, 36: 034001. doi: 10.11884/HPLPB202436.230200
Yi He, Wang Guiqiu, Wang Shixuan, et al. Effect of laser on the stopping power of a large range energetic Carbon ion in a two-component plasma[J]. High Power Laser and Particle Beams, 2024, 36: 034001. doi: 10.11884/HPLPB202436.230200
Citation: Yi He, Wang Guiqiu, Wang Shixuan, et al. Effect of laser on the stopping power of a large range energetic Carbon ion in a two-component plasma[J]. High Power Laser and Particle Beams, 2024, 36: 034001. doi: 10.11884/HPLPB202436.230200

激光对宽能域碳离子在双组份等离子体中阻止本领的影响

doi: 10.11884/HPLPB202436.230200
基金项目: 国家自然科学基金项目(11875096)
详细信息
    作者简介:

    伊 合,2277069562@qq.com

    通讯作者:

    王桂秋,gqwang@dlmu.edu.cn

  • 中图分类号: 0532+.13

Effect of laser on the stopping power of a large range energetic Carbon ion in a two-component plasma

  • 摘要: 在线性化伏拉索夫-泊松模型基础上研究了激光辐照下碳离子在双组份等离子体中的阻止本领,重点讨论了不同激光振幅、激光频率、激光角度、等离子体密度和等离子体电子温度对阻止本领的影响。研究结果表明,在全域范围内,激光对阻止本领的影响都非常明显。在低能区域(入射速度为等离子体电子热速度的0~0.1倍),碳离子的阻止本领主要来自于等离子体中离子的贡献,特别是在入射速度约为等离子体离子热速度时,阻止本领出现了第一个峰值;在中高能区域(入射速度大于0.1倍的等离子体电子热速度),碳离子的能量损失主要来自于等离子体中电子的贡献,特别是在入射速度约为等离子体电子热速度的1.5倍时,阻止本领出现了第二个峰值。碳离子在等离子体中阻止本领的这种双峰结构体现了不同能量区域等离子体中离子和电子对阻止本领的贡献。另一方面,激光强度或激光频率的增加削弱了阻止本领,阻止本领会随着等离子体密度的增加或电子温度的降低而增强,特别是由于离子引起的低能峰与电子引起的高能峰相比阻止本领的增强更明显。
  • 图  1  在不同的(a)激光驱动振幅、(b)激光频率比和(c)激光角度情况下,激光场对碳离子在电子等离子体中的阻止本领的影响

    Figure  1.  Influence of laser field on the stopping power of carbon ion moving in the electron plasma with different (a) laser driven amplitudes, (b) laser frequency ratios and (c) laser angles

    图  2  不同(a)等离子体密度、(b)电子温度对碳离子在电子等离子体中的阻止本领的影响

    Figure  2.  Influence of plasma factors on the stopping power of carbon ion moving in the electron plasma with different (a) plasma densities,(b) electron temperatures

    图  3  在不同的(a)激光驱动振幅、(b)激光频率比和(c)激光角度情况下,激光场对碳离子在电子-离子等离子体中阻止本领的影响

    Figure  3.  Influence of laser field on the stopping power of carbon ion moving in the electron-ion plasma with different laser driven amplitudes, laser frequency ratios and laser angles

    图  4  等离子体密度及电子温度对碳离子在电子等离子体中阻止本领的影响

    Figure  4.  Effect of laser field on the stopping power of carbon ion moving in the electron plasma with different (a) plasma densities, (b) electron temperatures

  • [1] Eliezer S, Murakami M, Martinez Val J M. Equation of state and optimum compression in inertial fusion energy[J]. Laser and Particle Beams, 2007, 25(4): 585-592. doi: 10.1017/S0263034607000699
    [2] Barriga-Carrasco M D. Target electron collision effects on energy loss straggling of protons in an electron gas at any degeneracy[J]. Physics of Plasmas, 2008, 15: 033103. doi: 10.1063/1.2888525
    [3] Cook R C, Kozioziemski B J, Nikroo A, et al. National Ignition Facility target design and fabrication[J]. Laser and Particle Beams, 2008, 26(3): 479-487. doi: 10.1017/S0263034608000499
    [4] Golubev A, Basko M, Fertman A, et al. Dense plasma diagnostics by fast proton beams[J]. Physical Review E, 1998, 57(3): 3363-3367. doi: 10.1103/PhysRevE.57.3363
    [5] Alviri V M, Asem M M. Hadron therapy based on laser acceleration in the plasma channel using oxygen ionization[J]. IEEE Access, 2019, 7: 183262-183291. doi: 10.1109/ACCESS.2019.2952916
    [6] Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
    [7] Vieux G, Brunetti E, Cipiccia S, et al. Towards a high efficiency amplifier based on Raman amplification[J]. Plasma Physics and Controlled Fusion, 2020, 62: 014018. doi: 10.1088/1361-6587/ab56de
    [8] Williams G J, Tommasini R, Lemos N, et al. High-energy differential-filtering photon spectrometer for ultraintense laser-matter interactions[J]. Review of Scientific Instruments, 2018, 89: 10F116. doi: 10.1063/1.5039383
    [9] Bulanov S V, Khoroshkov V S. Feasibility of using laser ion accelerators in proton therapy[J]. Plasma Physics Reports, 2002, 28(5): 453-456. doi: 10.1134/1.1478534
    [10] Ledingham K W D, Galster W, Sauerbrey R. Laser-driven proton oncology—a unique new cancer therapy?[J]. The British Journal of Radiology, 2007, 80(959): 855-858. doi: 10.1259/bjr/29504942
    [11] Kluge T, Rödel M, Metzkes-Ng J, et al. Observation of ultrafast solid-density plasma dynamics using femtosecond X-ray pulses from a free-electron laser[J]. Physical Review X, 2018, 8: 031068.
    [12] Parigger C G. Laser-plasma and stellar astrophysics spectroscopy[J]. Contributions of the Astronomical Observatory Skalnaté Pleso, 2020, 50(1): 15-31.
    [13] Remington B A, Arnett D, Paul R, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284(5419): 1488-1493. doi: 10.1126/science.284.5419.1488
    [14] Bulanov S V, Esirkepov T Z, Kando M, et al. On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers[J]. Plasma Physics Reports, 2015, 41(1): 1-51. doi: 10.1134/S1063780X15010018
    [15] Jia Shaokui, Zhou Jiaqi, Wang Xing, et al. Cold-target electron-ion-coincidence momentum-spectroscopy study of electron-impact single and double ionization of N2 and O2 molecules[J]. Physical Review A, 2023, 107: 032819. doi: 10.1103/PhysRevA.107.032819
    [16] Frenje J A. Nuclear diagnostics for inertial confinement fusion (ICF) plasmas[J]. Plasma Physics and Controlled Fusion, 2019, 62: 023001.
    [17] Ren Jieru, Ma Bubo, Liu Lirong, et al. Target density effects on charge transfer of laser-accelerated carbon ions in dense plasma[J]. Physical Review Letters, 2023, 130: 095101. doi: 10.1103/PhysRevLett.130.095101
    [18] Ren Jieru, Deng Zhigang, Qi Wei, et al. Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter[J]. Nature Communications, 2020, 11: 5157. doi: 10.1038/s41467-020-18986-5
    [19] 胡章虎, 王琼, 宋远红, 等. 带电粒子与磁化等离子体相互作用的极化效应及能量损失[J]. 强激光与粒子束, 2008, 20(11):1919-1922

    Hu Zhanghu, Wang Qiong, Song Yuanhong, et al. Polarization effect and energy loss in interactions of charged particles with magnetized plasmas[J]. High Power Laser and Particle Beams, 2008, 20(11): 1919-1922
    [20] Brandt W, Kitagawa M. Effective stopping-power charges of swift ions in condensed matter[J]. Physical Review B, 1982, 25(9): 5631-5637. doi: 10.1103/PhysRevB.25.5631
    [21] D’Avanzo J, Hofmann I, Lontano M. Effective charge in heavy ion stopping in classical collisionless plasmas[J]. Physics of Plasmas, 1996, 3(11): 3885-3889. doi: 10.1063/1.871576
    [22] Arista N R, Galvo R O M, Miranda L C M. Laser-field effects on the interaction of charged particles with a degenerate electron gas[J]. Physical Review A, 1989, 40(7): 3808-3816. doi: 10.1103/PhysRevA.40.3808
    [23] Wang Guiqiu, Song Yuanhong, Wang Younian, et al. Influence of a laser field on Coulomb explosions and stopping power for swift molecular ions interacting with solids[J]. Physical Review A, 2002, 66: 042901. doi: 10.1103/PhysRevA.66.042901
    [24] D’Avanzo J, Lontano M, Tome’ E, et al. Heavy-ion interaction in a nonisothermal plasma with two-ion correlation effects[J]. Physical Review E, 1995, 52(1): 919-931. doi: 10.1103/PhysRevE.52.919
    [25] Wang Guiqiu, Wang Younian. Influence of strong laser fields on Coulomb explosions energy losses of correlated-ion clusters in plasmas[J]. Physics of Plasmas, 2004, 11(3): 1187-1193. doi: 10.1063/1.1645794
  • 加载中
图(4)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  62
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-12-14
  • 录用日期:  2023-12-14
  • 网络出版日期:  2024-03-01
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回