留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳化硅等离子体器件的功率脉冲锐化技术

郭登耀 汤晓燕 宋庆文 周瑜 郭京凯 孙乐嘉 袁昊 杜丰羽 张玉明

郭登耀, 汤晓燕, 宋庆文, 等. 基于碳化硅等离子体器件的功率脉冲锐化技术[J]. 强激光与粒子束, 2024, 36: 013008. doi: 10.11884/HPLPB202436.230209
引用本文: 郭登耀, 汤晓燕, 宋庆文, 等. 基于碳化硅等离子体器件的功率脉冲锐化技术[J]. 强激光与粒子束, 2024, 36: 013008. doi: 10.11884/HPLPB202436.230209
Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Power pulse sharpening technology based on silicon carbide plasma devices[J]. High Power Laser and Particle Beams, 2024, 36: 013008. doi: 10.11884/HPLPB202436.230209
Citation: Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Power pulse sharpening technology based on silicon carbide plasma devices[J]. High Power Laser and Particle Beams, 2024, 36: 013008. doi: 10.11884/HPLPB202436.230209

基于碳化硅等离子体器件的功率脉冲锐化技术

doi: 10.11884/HPLPB202436.230209
基金项目: 国家自然科学基金项目(62174123)
详细信息
    作者简介:

    郭登耀,guodengyao@stu.xidian.edu.cn

    通讯作者:

    宋庆文,qwsong@xidian.edu.cn

  • 中图分类号: TN31

Power pulse sharpening technology based on silicon carbide plasma devices

  • 摘要: 利用Sentaurus搭建了碳化硅漂移阶跃恢复二极管(DSRD)与雪崩整形二极管(DAS)全电路仿真模型,研究了碳化硅等离子体器件在脉冲锐化方面的能力,并且通过器件内部等离子浓度分布解释了这两种器件实现脉冲锐化的机制。借助碳化硅DSRD可以将峰值超过千伏的电压脉冲的前沿缩短到300 ps;碳化硅DSRD与DAS的组合可以输出脉冲前沿在35 ps、峰值超过2 kV的电压脉冲。仿真与实验发现当触发脉冲与碳化硅DAS匹配时,可以实现快速开启后快速关断,得益于碳化硅DAS这种神奇现象,可以将峰值在两千伏以上脉冲的半高宽缩小到百皮秒量级;通过频谱分析发现脉冲经过DAS整形后,其最高幅值−30 dB对应的频谱带宽扩大了37倍,达到7.4 GHz。
  • 图  1  仿真所用DSRD与DAS的结构示意图以及击穿特性

    Figure  1.  Structure diagram and breakdown characteristics of DSRD and DAS in the simulation

    图  2  DSRD基脉冲锐化电路(红框与蓝框不同时连接)

    Figure  2.  DSRD based pulse sharpening circuit (red and blue frames are not connected simultaneously)

    图  3  基于DSRD与DAS的脉冲锐化电路(红框与绿框不同时连接)

    Figure  3.  Pulse sharpening circuit based on DSRD and DAS (red and green frames are not connected simultaneously)

    图  4  DSRD关断过程中一些关键物理量的变化,其中t1=66.39 ns;t2=67.54 ns;t3=67.84 ns

    Figure  4.  Changes of some key physical quantities during DSRD shutdown, where t1=66.39 ns; t2 = 67.54 ns;t3 = 67.84 ns

    图  5  DAS触发过程中一些关键物理量的变化,其中t1=67.514 ns;t2=67.823 ns;t3=67.858 ns;t4=68.006 ns

    Figure  5.  Changes of some key physical quantities during DAS triggering, where t1=67.514 ns; t2=67.823 ns; t3=67.858 ns; t4=68.006 ns

    图  6  实验中不同电路条件下碳化硅DAS输出脉冲情况

    Figure  6.  Output pulse of silicon carbide DAS under different circuit conditions in the experiment

    图  7  碳化硅等离子体脉冲功率器件对电脉冲的锐化情况

    Figure  7.  Sharpening effect of silicon carbide plasma pulse power devices on electrical pulses

    表  1  仿真所用电路元件参数

    Table  1.   Circuit component parameters used for simulation

    R1 R2 C1/nF C2/nF C3/nF C4/pF L1/nH L2/nH L3/μH L4/μH
    50 1000 0.2 2 2 3 80 75 2 2
    下载: 导出CSV
  • [1] Bluhm H. 脉冲功率系统的原理与应用[M]. 江伟华, 张弛, 译. 北京: 清华大学出版社, 2008

    Bluhm H. Pulsed power systems: principles and applications[M]. Jiang Weihua, Zhang Chi, trans. Beijing: Tsinghua University Press, 2008
    [2] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [3] 余岳辉, 梁琳. 脉冲功率器件及其应用[M]. 北京: 机械工业出版社, 2010

    Yu Yuehui, Liang Lin. Pulsed power devices and their applications[M]. Beijing: China Machine Press, 2010
    [4] Grekhov I V, Efanov V M, Kardo-Sysoev A F, et al. Power drift step recovery diodes (DSRD)[J]. Solid-State Electronics, 1985, 28(6): 597-599. doi: 10.1016/0038-1101(85)90130-3
    [5] 王淦平, 李飞, 金晓, 等. 快速关断半导体开关工作特性及实验研究[J]. 强激光与粒子束, 2020, 32:025014 doi: 10.11884/HPLPB202032.190298

    Wang Ganping, Li Fei, Jin Xiao, et al. Study of ultrafast semiconductor opening switch[J]. High Power Laser and Particle Beams, 2020, 32: 025014 doi: 10.11884/HPLPB202032.190298
    [6] Focia R J, Schamiloglu E, Fleddermann C B, et al. Silicon diodes in avalanche pulse-sharpening applications[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 138-144. doi: 10.1109/27.602484
    [7] 张玲, 周斌, 谢义方, 等. 基于漂移阶跃恢复二极管的超宽带探地雷达发射技术[J]. 强激光与粒子束, 2009, 21(12):1854-1858

    Zhang Ling, Zhou Bin, Xie Yifang, et al. Transmitter techniques for ultra-wideband ground penetratingradar based on drift step recovery diodes[J]. High Power Laser and Particle Beams, 2009, 21(12): 1854-1858
    [8] 赖雨辰, 谢彦召, 王海洋, 等. 基于DSRD的高重频固态脉冲源的研制[J]. 强激光与粒子束, 2020, 32:105002 doi: 10.11884/HPLPB202032.200102

    Lai Yuchen, Xie Yanzhao, Wang Haiyang, et al. Development of the high repetitive frequency solid-state pulse generator based on DSRD[J]. High Power Laser and Particle Beams, 2020, 32: 105002 doi: 10.11884/HPLPB202032.200102
    [9] 王翔宇, 卢彦雷, 朱郁丰, 等. 紧凑型高功率亚纳秒脉冲压缩装置的设计研制[J]. 强激光与粒子束, 2023, 35:025006 doi: 10.11884/HPLPB202335.220254

    Wang Xiangyu, Lu Yanlei, Zhu Yufeng, et al. Design and development of compact high power subnanosecond pulse compression device[J]. High Power Laser and Particle Beams, 2023, 35: 025006 doi: 10.11884/HPLPB202335.220254
    [10] Kramer D. National Ignition Facility surpasses long-awaited fusion milestone[Z]. 2022.
    [11] Ivanov M S, Rodin P B, Ivanov P A, et al. Parameters of silicon carbide diode avalanche shapers for the picosecond range[J]. Technical Physics Letters, 2016, 42(1): 43-46. doi: 10.1134/S1063785016010090
    [12] Ivanov P A, Kon'kov O I, Samsonova T P, et al. 4 H-SiC based subnanosecond (150 ps) high-voltage (1600 V) current breakers[J]. Technical Physics Letters, 2018, 44(2): 87-89. doi: 10.1134/S1063785018020086
    [13] Guo Dengyao, Zhou Yu, Tang Xiaoyan, et al. Direct comparison of silicon carbide and silicon diode avalanche shaper in multi-pulse applications[J]. Journal of Crystal Growth, 2023, 603: 127007. doi: 10.1016/j.jcrysgro.2022.127007
    [14] Zhou Yu, Tang Xiaoyan, Song Qingwen, et al. Demonstration of picosecond 4H-SiC diode avalanche shaper with voltage rise rate of 11.14 kV/ns and peak power density of 62 MW/cm2[J]. IEEE Transactions on Power Electronicss, 2022, 37(4): 3724-3727. doi: 10.1109/TPEL.2021.3122261
    [15] Grekhov I V, Ivanov P A, Khristyuk D V, et al. Sub-nanosecond semiconductor opening switches based on 4H-SiC p+pon+-diodes[J]. Solid-State Electronics, 2003, 47(10): 1769-1774. doi: 10.1016/S0038-1101(03)00157-6
    [16] Yang Zewei, Liang Lin, Yan Xiaoxue. Dynamic electrical characteristics of 4H-SiC drift step recovery diodes of high voltage[J]. IEEE Transactions on Plasma Science, 2022, 50(5): 1276-1281. doi: 10.1109/TPS.2022.3164752
    [17] Afanasyev A V, Ivanov B V, Ilyin V A, et al. A study of 4H-SiC diode avalanche shaper[J]. Journal of Physics:Conference Series, 2017, 917: 082002. doi: 10.1088/1742-6596/917/8/082002
    [18] 周瑜. 4H-SiC等离子体波开关器件研究[D]. 西安: 西安电子科技大学, 2022

    Zhou Yu. Research on 4H-SiC plasma wave switching devices[D]. Xi’an: Xidian University, 2022
    [19] Synopsys. Sentaurus device user guide. Version O-201806[M]. Mountain View: Synopsys, 2018.
    [20] 王亚杰, 何鹏军, 荆晓鹏, 等. 基于漂移阶跃恢复二极管开关的脉冲源仿真计算[J]. 强激光与粒子束, 2018, 30:095005 doi: 10.11884/HPLPB201830.170398

    Wang Yajie, He Pengjun, Jing Xiaopeng, et al. Simulation and calculation of pulsed power source based on drift step recovery diode switching[J]. High Power Laser and Particle Beams, 2018, 30: 095005 doi: 10.11884/HPLPB201830.170398
    [21] Merensky L M, Kardo-Sysoev A F, Shmilovitz D, et al. Efficiency study of a 2.2 kV, 1 ns, 1 MHz pulsed power generator based on a drift-step-recovery diode[J]. IEEE Transactions on Plasma Science, 2013, 41(11): 3138-3142. doi: 10.1109/TPS.2013.2284601
    [22] Minarskii A M, Rodin P B. Critical voltage growth rate when initiating the ultrafast impact ionization front in a diode structure[J]. Semiconductors, 2000, 34(6): 665-667. doi: 10.1134/1.1188051
    [23] Guo Dengyao, Zhou Yu, Tang Xiaoyan, et al. Half trigger operation mode of 4H-SiC diode avalanche shaper[C]//Proceedings of the 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology. 2022: 1-3.
    [24] Guo Dengyao, Tang Xiaoyan, Song Qingwen, et al. Investigation on triggering mode and criterion of 4H-SiC diode avalanche shaper[J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4075-4080. doi: 10.1109/TED.2023.3283368
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  173
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-12-01
  • 录用日期:  2023-12-01
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回