留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级XRAM型脉冲功率电源开关器件简化研究

张玉宸 戴玲 樊晟廷 冯永杰 林福昌

张玉宸, 戴玲, 樊晟廷, 等. 多级XRAM型脉冲功率电源开关器件简化研究[J]. 强激光与粒子束, 2024, 36: 025002. doi: 10.11884/HPLPB202436.230211
引用本文: 张玉宸, 戴玲, 樊晟廷, 等. 多级XRAM型脉冲功率电源开关器件简化研究[J]. 强激光与粒子束, 2024, 36: 025002. doi: 10.11884/HPLPB202436.230211
Zhang Yuchen, Dai Ling, Fan Shengting, et al. Research on switching devices simplification of multistage XRAM pulse power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025002. doi: 10.11884/HPLPB202436.230211
Citation: Zhang Yuchen, Dai Ling, Fan Shengting, et al. Research on switching devices simplification of multistage XRAM pulse power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025002. doi: 10.11884/HPLPB202436.230211

多级XRAM型脉冲功率电源开关器件简化研究

doi: 10.11884/HPLPB202436.230211
详细信息
    作者简介:

    张玉宸,M202172000@hust.edu.cn

    通讯作者:

    戴 玲,dailing@mail.hust.edu.cn

  • 中图分类号: TM89

Research on switching devices simplification of multistage XRAM pulse power supply

  • 摘要: 电磁发射的能力主要取决于脉冲功率电源系统,脉冲功率电源的优化是电磁发射技术取得进一步突破的关键技术之一。电感储能型脉冲功率电源在能量密度方面有很大优势,具备深远的发展潜力。基于串联充电和并联放电的XRAM型脉冲功率电源具有结构简单、可扩展性强的优点。分析了多级XRAM电源拓扑结构中二极管器件的工作原理,按照功能分类,提出了简化二极管器件数量的方案。建立了基于ICCOS的30级XRAM型脉冲功率电源带轨道炮负载的仿真模型,每5级为一个电源模块,系统总储能为365 kJ,发射效率近20%。通过对比简化前后模型性能指标的仿真结果,证明了简化第一级的下臂二极管不利于多级电源的运行。简化多级拓扑中的最后一级逆流电容串联二极管,以及在优化逆流电容参数的前提下简化充电晶闸管的反并二极管,对电源模块的放电电流没有明显影响。
  • 图  1  带ICCOS的多级XRAM电源拓扑图

    Figure  1.  Multilevel XRAM power topology with ICCOS

    图  2  电感充电过程中电感-逆流电容回路示意图

    Figure  2.  Schematic diagram of inductor-countercurrent capacitor loop

    图  3  去除逆流电容串联二极管后各级逆流电容电压波形

    Figure  3.  Voltage waveform of countercurrent capacitor after removing series diode of countercurrent capacitor

    图  4  轨道炮负载等效电路

    Figure  4.  Equivalent circuit of railgun load

    图  5  轨道炮负载模型计算框图

    Figure  5.  Calculation block diagram of railgun load model

    图  6  Simulink仿真波形

    Figure  6.  Simulated waveform in Simulink

    表  1  系统仿真参数选取

    Table  1.   Selection of system simulation parameters

    symbolquantityvalue
    Usvoltage of single module charging capacitor2440 V
    Lssingle stage energy storage inductance75 μH
    Rssingle stage energy storage resistance3 mΩ
    Ccountercurrent capacitance100 μH
    UCrecharge voltage of countercurrent capacitor3500 V
    L0initial rail inductance0.1 μH
    R0initial rail resistance0.1 mΩ
    $ {L_{\text{r}}}^\prime $rail inductance gradient0.5 μH/m
    $ {R_{\text{r}}}^\prime $rail resistance gradient0.1 mΩ/m
    RVCvelocity skin effect contact resistance constant10−8 Ω/(m/s)−2/3
    μhstatic friction coefficient0.05
    μglimit value of dynamic friction coefficient0.45
    cformula constant of sliding friction coefficient0.03
    Sccontact area between armature and rail5.5×10−3 m2
    Across-sectional area of projectile6.25×10−4 m2
    k1ratio of radial stress to axial stress0.025
    ρdensity of dry air1.293 g/L
    C0air drag coefficient0.5
    下载: 导出CSV

    表  2  仿真结果对比

    Table  2.   Comparison of simulation results

    simulation
    type
    peak load
    current Im/kA
    50%~50% pulse
    width Tw/ms
    projectile exit
    velocity vm/(m/s)
    emission efficiency
    η/%
    emission efficiency without
    countercurrent capacitance η0/%
    initial model540.41.820153218.3919.32
    remove D53540.81.820153418.4419.37
    remove D12513.21.772154018.5719.51
    remove D53 and D12513.21.774154118.6219.55
    remove D1~D5540.71.819153218.3919.32
    下载: 导出CSV

    表  3  充电晶闸管端电压变化

    Table  3.   Voltage change of charging thyristor

    recharge voltage of countercurrent
    capacitance Ucc /V
    T1 maximum reverse
    voltage Urm1/V
    T2 maximum reverse
    voltage Urm2/V
    T1 maximum forward
    voltage Ufm1/V
    T2 maximum forward
    voltage Ufm2/V
    3500−1388−1389991.2392.6
    3700−1602−1603993.8395.8
    4100−2304−2305999.3400.7
    4300−2761−27621002.0403.4
    4700−3486−34871008.0409.0
    4900−3559−35601011.0412.0
    下载: 导出CSV

    表  4  电源模块简化程度与级数的关系

    Table  4.   Relationship between simplification degree and series of power modules

    power supply
    stages
    total number of switching devices
    before simplification
    total number of switching devices
    after simplification
    quantity proportion of
    simplification/%
    211827.3
    3161225.0
    4211623.8
    5262023.1
    6312422.6
    7362822.2
    8413222.0
    9463621.7
    10514021.6
    下载: 导出CSV
  • [1] 马山刚, 于歆杰, 李臻. 用于电磁发射的电感储能型脉冲电源的研究现状综述[J]. 电工技术学报, 2015, 30(24):222-228,236 doi: 10.3969/j.issn.1000-6753.2015.24.028

    Ma Shangang, Yu Xinjie, Li Zhen. A review of the current research situation of inductive pulsed-power supplies for electromagnetic launch[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 222-228,236 doi: 10.3969/j.issn.1000-6753.2015.24.028
    [2] Liebfried O, Hundertmark S, Frings P. Inductive pulsed power supply for a railgun artillery system[J]. IEEE Transactions on Plasma Science, 2019, 47(5): 2550-2555. doi: 10.1109/TPS.2019.2903725
    [3] 李军, 严萍, 袁伟群. 电磁轨道炮发射技术的发展与现状[J]. 高电压技术, 2014, 40(4):1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014

    Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development[J]. High Voltage Engineering, 2014, 40(4): 1052-1064 doi: 10.13336/j.1003-6520.hve.2014.04.014
    [4] Kanter M, Pokrvailo A, Shaked N, et al. Factors in inductive storage system design[C]//Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference. 1995: 186-191.
    [5] Yu Xinjie, Liu Xukun. Overview of circuit topologies for inductive pulsed power supplies[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 265-272. doi: 10.23919/TEMS.2017.8086105
    [6] Liebfried O. Review of inductive pulsed power generators for railguns[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1108-1114. doi: 10.1109/TPS.2017.2686648
    [7] Liu Xukun, Yu Xinjie. A new pulse-compression circuit with residual energy recovered[C]//2018 IEEE International Symposium on Circuits and Systems (ISCAS). 2018: 1-4.
    [8] Liebfried O, Brommer V. A four-stage XRAM generator as inductive pulsed power supply for a small-caliber railgun[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2805-2809. doi: 10.1109/TPS.2013.2257873
    [9] DedieP, Brommer V, Scharnholz S. Experimental realization of an eight-stage XRAM generator based on ICCOS semiconductor opening switches, fed by a magnetodynamic storage system[J]. IEEE Transactions on Magnetics, 2009, 45(1): 266-271. doi: 10.1109/TMAG.2008.2008418
    [10] DediéP, Brommer V, Scharnholz S. Twenty-stage toroidal XRAM generator switched by countercurrent thyristors[J]. IEEE Transactions on Plasma Science, 2011, 39(1): 263-267. doi: 10.1109/TPS.2010.2055168
    [11] Dedie P, Brommer V. Wire explosion fed by a 32-kJ XRAM generator switched by semiconductor elements[C]//2009 IET European Pulsed Power Conference. 2009: 1-4.
    [12] Liebfried O, Roch M. Augmented railgun with integrated XRAM current multiplication[C]//2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC). 2014: 279-282.
    [13] LiebfriedO, BrommerV. Demonstration of a 1 MJ XRAM generator supplying a medium caliber railgun[J]. IEEE Access, 2020, 8: 225018-225031. doi: 10.1109/ACCESS.2020.3044441
    [14] 于歆杰, 初祥祥. 串充并放型电感储能脉冲电源XRAM的解耦改进[J]. 清华大学学报(自然科学版), 2012, 52(5):710-714 doi: 10.16511/j.cnki.qhdxxb.2012.05.026

    Yu Xinjie, Chu Xiangxiang. Decoupling to improve XRAM inductive pulse power sources with series charging and parallel discharging characteristics[J]. Journal of Tsinghua University(Science and Technology), 2012, 52(5): 710-714 doi: 10.16511/j.cnki.qhdxxb.2012.05.026
    [15] EngelT G, Neri J M, Veracka M J. Characterization of the velocity skin effect in the surface layer of a railgun sliding contact[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1837-1844. doi: 10.1109/TMAG.2008.922310
    [16] BarberJ P, Challita A. Velocity effects on metal armature contact transition (railguns)[J]. IEEE Transactions on Magnetics, 1993, 29(1): 733-738. doi: 10.1109/20.195667
    [17] Aigner S, Igenbergs E. Friction and ablation measurements in a round bore railgun[J]. IEEE Transactions on Magnetics, 1989, 25(1): 33-39. doi: 10.1109/20.22500
    [18] Liang Zhi, Dai Ling, Feng Yongjie, et al. Modeling and parameter study of electromagnetic launch system driven by inductive pulsed power supply[C]//22nd International Symposium on High Voltage Engineering. 2021: 784-789.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  106
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-09-13
  • 录用日期:  2023-09-15
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回