留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波形测试的异质结双极型晶体管器件负载失配影响分析

张津豪 苏江涛 谢炜誉 邵世缘 徐魁文 李文钧

张津豪, 苏江涛, 谢炜誉, 等. 基于波形测试的异质结双极型晶体管器件负载失配影响分析[J]. 强激光与粒子束, 2024, 36: 013006. doi: 10.11884/HPLPB202436.230214
引用本文: 张津豪, 苏江涛, 谢炜誉, 等. 基于波形测试的异质结双极型晶体管器件负载失配影响分析[J]. 强激光与粒子束, 2024, 36: 013006. doi: 10.11884/HPLPB202436.230214
Zhang Jinhao, Su Jiangtao, Xie Weiyu, et al. Load mismatch effects to heterojunction bipolar transistor device based on waveform measurement[J]. High Power Laser and Particle Beams, 2024, 36: 013006. doi: 10.11884/HPLPB202436.230214
Citation: Zhang Jinhao, Su Jiangtao, Xie Weiyu, et al. Load mismatch effects to heterojunction bipolar transistor device based on waveform measurement[J]. High Power Laser and Particle Beams, 2024, 36: 013006. doi: 10.11884/HPLPB202436.230214

基于波形测试的异质结双极型晶体管器件负载失配影响分析

doi: 10.11884/HPLPB202436.230214
基金项目: 国家自然科学基金项目(62293493); 科技部重点研发计划(2020YFB1804903)
详细信息
    作者简介:

    张津豪,zjhhdu@163.com

    通讯作者:

    苏江涛,jtsu@hdu.edu.cn

  • 中图分类号: TN97

Load mismatch effects to heterojunction bipolar transistor device based on waveform measurement

  • 摘要: 大功率电磁脉冲冲击下,射频集成微系统内部容易产生负载失配问题,严重者可能导致系统失效甚至损毁。采用实时的波形测试方法,对射频器件的负载失配进而导致器件损毁的机理进行了分析。该方法以矢量网络分析仪作为主要测试仪器,结合回波信号注入和相位参考模块获得待测器件实时电压电流波形,进而分析其负载失配影响机制。采用有源负载牵引技术模拟大功率耦合电磁脉冲注入,进行了电压驻波比39∶1的失配测试,大幅提升了测试范围。创新性地采用了谐波信号源注入模拟杂散谐波电磁干扰,评估器件的谐波阻抗失配特性。通过实际异质结双极型晶体管(HBT)器件测试的结果表明,基波的失配会造成负载端电压过大,增加器件的易损性;基波和谐波频率的干扰分量组合使得输出电压瞬态峰值升高,造成器件的损毁。在进行电磁安全防护时,应同时考虑基波和谐波频率的防护。
  • 图  1  失配测试系统框图

    Figure  1.  Block diagram of load mismatch measurement system

    图  2  实时负载牵引测试系统的照片

    Figure  2.  Photograph of real-time load pull measurement system

    图  3  寄生结构与去嵌入对比

    Figure  3.  Parasitic model and comparison about deembedding

    图  4  最佳阻抗点下的功率扫描

    Figure  4.  Power sweep under optimal load impedance

    图  5  失配测试的阻抗点位置

    Figure  5.  Locations of impedance point for ruggedness test

    图  6  HBT器件在二次谐波负载失配下的射频特性

    Figure  6.  Characteristic of HBT under 2nd harmonic load mismatch

    图  7  HBT器件在基波负载失配下的射频I-V特性

    Figure  7.  RF I-V characteristic of HBT under fundamental load mismatch

    图  8  失配时基波和二次谐波的动态负载线

    Figure  8.  DLLs of fundamental and 2nd harmonic ruggedness

  • [1] 谢斌, 刘洁, 王波, 等. 强电磁脉冲防护技术研究[J]. 火控雷达技术, 2020, 49(2):111-115

    Xie Bin, Liu Jie, Wang Bo, et al. Research on strong electromagnetic pulse protection technology[J]. Fire Control Radar Technology, 2020, 49(2): 111-115
    [2] 姜刚, 闫萌. 一种相控阵雷达电磁脉冲防护技术研究[C]//2021年全国微波毫米波会议论文集(上册). 2021: 3

    Jiang Gang, Yan Meng. Research on electromagnetic pulse protection technology of phased array radar[C]//Proceedings of the 2021 National Microwave and Millimeter Wave Conference (Volume 1). 2021: 3
    [3] Laribi H, Dehkhoda P, Tavakoli A, et al. Susceptibility analysis of a low-noise amplifier against an electromagnetic pulse[J]. IET Science, Measurement & Technology, 2020, 14(10): 1044-1048.
    [4] Zhao Siyuan, Pan Tao, Su Jiangtao. A real-time waveform load-pull technique enabling the access to RF PA ruggedness[C]//2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). 2021: 1-3.
    [5] Loescher D, Tasker P, Cripps S. Using waveform engineering to understand the impact of harmonic terminations during 5: 1 VSWR stress tests[C]//2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR). 2016: 49-52.
    [6] 张猛. 异质结双极晶体管HBT单边增益研究[D]. 杭州: 浙江大学, 2008

    Zhang Meng. Unilateral power gain of heterojunction bipolar transistor[D]. Hangzhou: Zhejiang University, 2008
    [7] Deng Junxiong, Gudem P S, Larson L E, et al. A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(2): 529-537. doi: 10.1109/TMTT.2004.840629
    [8] Singhal S, Li T, Chaudhari A, et al. Reliability of large periphery GaN-on-Si HFETs[J]. Microelectronics Reliability, 2006, 46(8): 1247-1253. doi: 10.1016/j.microrel.2006.02.009
    [9] 陈繁, 马婷, 谭开洲, 等. SBFL结构SiGe HBT器件的击穿特性研究[J]. 微电子学, 2017, 47(3):433-436

    Chen Fan, Ma Ting, Tan Kaizhou, et al. Research on the breakdown characteristics of SiGe HBT with SBFL structure[J]. Microelectronics, 2017, 47(3): 433-436
    [10] Formicone G, Boueri F, Burger J, et al. Analysis of bias effects on VSWR ruggedness in RF LDMOS for avionics applications[C]//Microwave Integrated Circuit Conference. 2008: 28-31.
    [11] McGenn W, Choi H, Lees J, et al. Development of a RF waveform stress test procedure for GaN HFETs subjected to infinite VSWR sweeps[C]//IEEE/MTT-S International Microwave Symposium Digest. 2012: 1-3.
    [12] Bengtsson O, Chevtchenko S, Chowdhary A, et al. VSWR testing of RF-power GaN transistors[C]//9th European Microwave Integrated Circuit Conference. 2014: 460-463.
    [13] 张硕. 高功率微波作用下的低噪声放大器的损坏机理及其防护研究[D]. 上海: 上海交通大学, 2016

    Zhang Shuo. Investigation of the destruction mechanism and protection circuit of a low noise amplifier injected by high power microwave[D]. Shanghai: Shanghai Jiao Tong University, 2016
    [14] Chen J J, Gao G B, Chyi J I, et al. Breakdown behavior of GaAs/AlGaAs HBTs[J]. IEEE Transactions on Electron Devices, 1989, 36(10): 2165-2172. doi: 10.1109/16.40896
    [15] Wu Y F, Keller B P, Keller S, et al. Measured microwave power performance of AlGaN/GaN MODFET[J]. IEEE Electron Device Letters, 1996, 17(9): 455-457. doi: 10.1109/55.536291
    [16] 郭庭铭, 苏江涛, 刘军, 等. 一种基于双工器的谐波有源负载牵引测试系统[J]. 杭州电子科技大学学报(自然科学版), 2020, 40(6):6-12

    Guo Tingming, Su Jiangtao, Liu Jun, et al. A Duplexer-based harmonic active load-pull measurement system[J]. Journal of Hangzhou Dianzi University (Natural Sciences), 2020, 40(6): 6-12
    [17] Jang H, Ko Y, Roblin P. Development of multiharmonic verification artifact for the LSNA and NVNA (MTT-11)[J]. IEEE Microwave Magazine, 2013, 14(1): 134-139. doi: 10.1109/MMM.2012.2226640
    [18] Su Jiangtao, Yang Baoguo, Gao Haijun, et al. A novel TRM calibration method for improvement of modelling accuracy at mm-wave frequency[C]//2018 IEEE/MTT-S International Microwave Symposium - IMS. 2018: 1300-1303.
    [19] 赖雨瑞. 微波射频探针的去嵌入研究及测试应用[D]. 成都: 电子科技大学, 2019

    Lai Yurui. De-embedding research and application of microwave/RF probes[D]. Chengdu: University of Electronic Science and Technology of China, 2019
  • 加载中
图(8)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  171
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 修回日期:  2023-09-08
  • 录用日期:  2023-08-28
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回