留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双差模非屏蔽线缆回路的电磁串扰研究

彭宁 杨勇 张明 饶波 张正卿

彭宁, 杨勇, 张明, 等. 双差模非屏蔽线缆回路的电磁串扰研究[J]. 强激光与粒子束, 2024, 36: 025017. doi: 10.11884/HPLPB202436.230228
引用本文: 彭宁, 杨勇, 张明, 等. 双差模非屏蔽线缆回路的电磁串扰研究[J]. 强激光与粒子束, 2024, 36: 025017. doi: 10.11884/HPLPB202436.230228
Peng Ning, Yang Yong, Zhang Ming, et al. Research on electromagnetic crosstalk in double differential mode unshielded cable loop[J]. High Power Laser and Particle Beams, 2024, 36: 025017. doi: 10.11884/HPLPB202436.230228
Citation: Peng Ning, Yang Yong, Zhang Ming, et al. Research on electromagnetic crosstalk in double differential mode unshielded cable loop[J]. High Power Laser and Particle Beams, 2024, 36: 025017. doi: 10.11884/HPLPB202436.230228

双差模非屏蔽线缆回路的电磁串扰研究

doi: 10.11884/HPLPB202436.230228
基金项目: 国家自然科学基金项目(62201217、51821005);国家重点研发计划项目(2017YFE0301803)
详细信息
    作者简介:

    彭 宁,2434324799@qq.com

    通讯作者:

    张正卿,zhangzhengq219@163.com

  • 中图分类号: TM552

Research on electromagnetic crosstalk in double differential mode unshielded cable loop

  • 摘要: 随着电气化的发展,电气与电子系统中的电磁兼容问题越来越被重视,为了消除或抑制电磁耦合的影响,实现设备或元件电磁兼容的工作,有必要对线缆间的串扰进行研究。但目前少有相关研究关注独立的发射回路与接收回路构成的双差模回路间的电磁串扰问题。提出了一种基于多导体传输线理论的五导体传输线模型,并基于此研究了双差模非屏蔽线缆回路间的串扰问题。该方法根据耦合机理,首先建立单位长度五导体传输线等效模型,然后根据有限差分的方法列写基尔霍夫方程组,最后补充边界条件后求解得到串扰的频域解。将串扰计算结果与CST软件仿真结果进行对比,验证了该模型和计算方法的可行性与有效性,经计算分别研究了感性耦合与容性耦合,分析得到了不同因素对线束间串扰的影响规律,可为实际工程中采取措施抑制线缆间串扰提供指导,体现出该模型的先进性。
  • 图  1  五导体传输线系统线缆分布示意图

    Figure  1.  Diagram of cable distribution in five-conductor transmission line system

    图  2  五导体传输线系统等效电路模型

    Figure  2.  Equivalent circuit model of a five-conductor transmission line system

    图  3  五导体传输线系统的离散模型

    Figure  3.  Discrete model of a five-conductor transmission line system

    图  4  五导体传输线系统线缆的截面分布

    Figure  4.  Cross-sectional distribution of cables for a five-conductor transmission line system

    图  5  MATLAB与CST仿真结果对比

    Figure  5.  Comparison of MATLAB and CST simulation results

    图  6  不同功率回路负载电阻下的串扰系数

    Figure  6.  Crosstalk coefficients at different power circuit load resistance

    图  7  不同电缆距地高度的串扰系数

    Figure  7.  Crosstalk coefficient at different cable height

    图  8  不同信号电缆间距离的串扰系数

    Figure  8.  Crosstalk coefficient at different distance between signal cables

    图  9  不同功率电缆间距离的串扰系数

    Figure  9.  Crosstalk coefficient at different distance between power cables

    图  10  不同功率回路与信号回路间距的串扰系数

    Figure  10.  Crosstalk coefficient at different spacing between power loop and signal loop

  • [1] 陈钰羽, 周凌霄. 短波监测机房传导性耦合干扰防护研究[J]. 数字通信世界, 2021(6):64-66 doi: 10.3969/J.ISSN.1672-7274.2021.06.028

    Chen Yuyu, Zhou Lingxiao. Research on protection of conducted interference in HF monitoring room[J]. Digital Communication World, 2021(6): 64-66 doi: 10.3969/J.ISSN.1672-7274.2021.06.028
    [2] Paul C R. Introduction to electromagnetic compatibility[M]. 2nd ed. Hoboken: Wiley, 2006.
    [3] 方举昊, 陈健, 颜伟, 等. 基于时域有限差分的传输线串扰方法研究[J]. 南京师范大学学报(工程技术版), 2020, 20(3):22-26,70

    Fang Juhao, Chen Jian, Yan Wei, et al. Research on transmission crosstalk method based on finite difference time domain method[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2020, 20(3): 22-26,70
    [4] Sridevi R, Chandra Sekhar P, Madhavi B K, et al. FDTD modeling for crosstalk reduction in coupled RLC interconnects with active shielding[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8(11): 1038-1042. doi: 10.35940/ijitee.J1100.0981119
    [5] 杨承潘. 基于FDTD算法的多导体传输线串扰研究[D]. 南京: 南京师范大学, 2020

    Yang Chengpan. Research on multi-conductor transmission line crosstalk based on FDTD[D]. Nanjing: Nanjing Normal University, 2020
    [6] 赵斌, 贾智, 王东, 等. 电气化铁路轨道电路钢轨互阻抗计算研究[J]. 铁道学报, 2021, 43(8):54-61

    Zhao Bin, Jia Zhi, Wang Dong, et al. Research on calculation of mutual impedance of rails in electrified railway track circuits[J]. Journal of the China Railway Society, 2021, 43(8): 54-61
    [7] 崔勇, 黄鑫, 杨晓凡. 基于多端口网络理论及矩量法的电缆串扰研究[J]. 铁道学报, 2022, 44(2):49-55

    Cui Yong, Huang Xin, Yang Xiaofan. Research on cable crosstalk based on multiport network theory and MoM[J]. Journal of the China Railway Society, 2022, 44(2): 49-55
    [8] Zhang Dan, Wen Yinghong, Wang Yansheng, et al. Coupling analysis for wires in a cable tray using circuit extraction based on mixed-potential integral equation formulation[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(3): 862-872. doi: 10.1109/TEMC.2016.2626310
    [9] Paul C R. Analysis of multiconductor transmission lines[M]. 2nd ed. Hoboken: Wiley, 2008.
    [10] Paul C R, Bowles B A. Symbolic solution of the multiconductor transmission-line equations for lines containing shielded wires[J]. IEEE Transactions on Electromagnetic Compatibility, 1991, 33(3): 149-162. doi: 10.1109/15.85128
    [11] 李世文, 王贵. 多导体传输线间的串扰分析与仿真[J]. 声学与电子工程, 2009(2):31-33,48

    Li Shiwen, Wang Gui. Analysis and simulation of crosstalk between multi-conductor transmission lines[J]. Acoustics and Electronics Engineering, 2009(2): 31-33,48
    [12] Paul C R. Solution of the transmission-line equations for three-conductor lines in homogeneous media[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, EMC-20(1): 216-222. doi: 10.1109/TEMC.1978.303651
    [13] Rotgerink J L, Schippers H, Leferink F. Low-frequency analysis of multiconductor transmission lines for crosstalk design rules[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(5): 1612-1620. doi: 10.1109/TEMC.2018.2868985
    [14] 崔勇, 谢路雨. 非屏蔽电缆束的串扰抑制措施研究[J]. 北京交通大学学报, 2022, 46(5):142-148,158

    Cui Yong, Xie Luyu. Research on crosstalk suppression measures for unshielded cables[J]. Journal of Beijing Jiaotong University, 2022, 46(5): 142-148,158
    [15] 王强, 沙斐. 平行双线串扰的分析[J]. 电子测量与仪器学报, 2008, 22(6):75-77,86

    Wang Qiang, Sha Fei. Analysis of crosstalk of two parallel transmission lines[J]. Journal of Electronic Measurement and Instrumentation, 2008, 22(6): 75-77,86
    [16] 梅梦蓉. 铁路信号电缆串扰的理论分析及测试[D]. 北京: 北京交通大学, 2017

    Mei Mengrong. Theoretical analysis and test of crosstalk of railway signal cables[D]. Beijing: Beijing Jiaotong University, 2017
    [17] 孙亚秀, 卓庆坤, 姜庆辉, 等. 基于多导体传输线理论的差模激励新型线束串扰模型研究[J]. 物理学报, 2015, 64:044102 doi: 10.7498/aps.64.044102

    Sun Yaxiu, Zhuo Qingkun, Jiang Qinghui, et al. New differential-mode-source cable bundle crosstalk model based on multiconductor transmission lines theory[J]. Acta Physica Sinica, 2015, 64: 044102 doi: 10.7498/aps.64.044102
    [18] 段建晋, 阎毓杰. 基于传输线方法的电缆耦合预测技术[J]. 舰船电子工程, 2008(8):157-161 doi: 10.3969/j.issn.1627-9730.2008.08.047

    Duan Jianjin, Yan Yujie. Coupling prediction technology based on the transmission line approach[J]. Ship Electronic Engineering, 2008(8): 157-161 doi: 10.3969/j.issn.1627-9730.2008.08.047
    [19] 张博, 罗映红. 端接阻抗对传输线线间耦合的影响分析[J]. 自动化技术与应用, 2009, 28(11):58-60,74

    Zhang Bo, Luo Yinghong. The impact of terminal impedance on the coupling effect of the transmission line[J]. Techniques of Automation and Applications, 2009, 28(11): 58-60,74
    [20] 张璐. 动车组屏蔽电缆串扰机理的研究[D]. 北京: 北京交通大学, 2012

    Zhang Lu. The research of crosstalk between shielded cables of electrical multiple units[D]. Beijing: Beijing Jiaotong University, 2012
  • 加载中
图(10)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  59
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-09-24
  • 录用日期:  2023-09-24
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回