留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2包覆高镍NCM811的电化学性能研究

叶创新 宛传友 瞿诗霞 张俊林 陈光巳 陈志缘

叶创新, 宛传友, 瞿诗霞, 等. TiO2包覆高镍NCM811的电化学性能研究[J]. 强激光与粒子束, 2024, 36: 025022. doi: 10.11884/HPLPB202436.230233
引用本文: 叶创新, 宛传友, 瞿诗霞, 等. TiO2包覆高镍NCM811的电化学性能研究[J]. 强激光与粒子束, 2024, 36: 025022. doi: 10.11884/HPLPB202436.230233
Ye Chuangxin, Wan Chuanyou, Qu Shixia, et al. Study on the electrochemical performance of TiO2 coating on high nickel NCM811[J]. High Power Laser and Particle Beams, 2024, 36: 025022. doi: 10.11884/HPLPB202436.230233
Citation: Ye Chuangxin, Wan Chuanyou, Qu Shixia, et al. Study on the electrochemical performance of TiO2 coating on high nickel NCM811[J]. High Power Laser and Particle Beams, 2024, 36: 025022. doi: 10.11884/HPLPB202436.230233

TiO2包覆高镍NCM811的电化学性能研究

doi: 10.11884/HPLPB202436.230233
详细信息
    作者简介:

    叶创新,chauncey_ye@163.com

  • 中图分类号: TQ131.1

Study on the electrochemical performance of TiO2 coating on high nickel NCM811

  • 摘要: 高镍材料具有较好的电化学性能,但其存在着表面稳定性较差的问题,通过钛酸四丁酯在NCM811材料表面水解生成TiO2,改善了高镍材料的表面稳定性。利用SEM和TEM对改性后的材料进行表面分析,结果表明,实验成功将TiO2层均匀地包覆在高镍NCM811表面,并且发现,在表面包覆过程中,还发生了体相掺杂。利用表面包覆和体相掺杂的共同作用,在1C放电的条件下,循环200圈后,材料的容量保持率从81.40%提升至92.39%,改善了材料的电化学性能。
  • 图  1  NCM811包覆TiO2的制备方法图示

    Figure  1.  Preparation method diagram of NCM811 coated with TiO2

    图  2  不同量钛酸四丁酯涂层产品的SEM图像

    Figure  2.  SEM images of coated products with different amounts of tetrabutyl titanate

    图  3  T-NCM811的SEM及元素分布谱图

    Figure  3.  SEM and elemental distribution spectrum of T-NCM811

    图  4  NCM被TiO2包覆前后的SEM图对比

    Figure  4.  Comparison of SEM images of NCM before and after TiO2 coating

    图  5  NCM被TiO2包覆前后TEM图对比

    Figure  5.  Comparison of TEM images of NCM before and after TiO2 coating

    图  6  NCM811原始样和 TiO2包覆后样品的XRD图谱

    Figure  6.  XRD patterns of NCM811 original sample and TiO2 coated sample

    图  7  NCM811与T-NCM811的C80测试热流曲线

    Figure  7.  C80 test heat flow curve of NCM811 and T-NCM811

    图  8  NCM811和T-NCM811在不同循环下的充放电分布。

    Figure  8.  Charge and discharge distribution of NCM811and T-NCM811 under different cycles

    图  9  循环性能和首圈性能

    Figure  9.  Loop performance and first lap performance

    图  10  不同周期的EIS谱

    Figure  10.  EIS spectra at different periods

  • [1] Thackeray M M, Amine K. Layered Li–Ni–Mn–Co oxide cathodes[J]. Nature Energy, 2021, 6(9): 933. doi: 10.1038/s41560-021-00860-3
    [2] Yin Shouyi, Deng Wentao, Chen Jun, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy, 2021, 83: 105854. doi: 10.1016/j.nanoen.2021.105854
    [3] Yin L, Li Z, Mattei G S. Thermodynamics of antisite defects in layered NMC cathodes: systematic insights from high-precision powder diffraction analyses[J]. Chemistry of Materials, 2020, 32(3): 1002-1010. doi: 10.1021/acs.chemmater.9b03646
    [4] Gwon H, Kim S W, Park Y U, et al. Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi0.5Mn0.5O2[J]. Inorganic Chemistry, 2014, 53(15): 8083-8087. doi: 10.1021/ic501069x
    [5] Meng Kui, Wang Zhixing, Guo Huajun, et al. Enhanced cycling stability of LiNi0.8Co0.1Mn0.1O2 by reducing surface oxygen defects[J]. Electrochimica Acta, 2017, 234: 99-107. doi: 10.1016/j.electacta.2017.03.054
    [6] Xiao Yinguo, Liu Tongchao, Liu Jiajie, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(Ni x Mn y Co z )O2 cathode materials[J]. Nano Energy, 2018, 49: 77-85. doi: 10.1016/j.nanoen.2018.04.020
    [7] Hu Qiao, He Yufang, Ren Dongsheng, et al. Targeted masking enables stable cycling of LiNi0.6Co0.2Mn0.2O2 at 4.6V[J]. Nano Energy, 2022, 96: 107123. doi: 10.1016/j.nanoen.2022.107123
    [8] Yoon M, Dong Yanhao, Hwang J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries[J]. Nature Energy, 2021, 6(4): 362-371. doi: 10.1038/s41560-021-00782-0
    [9] Hall D S, Gauthier R, Eldesoky A, et al. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14095-14100.
    [10] Fan Qinglu, Lin Kaiji, Yang Shaodian, et al. Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control[J]. Journal of Power Sources, 2020, 477: 228745. doi: 10.1016/j.jpowsour.2020.228745
    [11] Ma Yuan, Teo J H, Walther F, et al. Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries[J]. Advanced Functional Materials, 2022, 32: 2111829. doi: 10.1002/adfm.202111829
    [12] Hua Weibo, Zhang Jibin, Zheng Zhuo, et al. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries[J]. Dalton Transactions, 2014, 43(39): 14824-14832. doi: 10.1039/C4DT01611D
    [13] Yang Zuguang, Guo Xiaodong, Xiang Wei, et al. K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: Towards the superior rate capability and cycling performance[J]. Journal of Alloys and Compounds, 2017, 699: 358-365. doi: 10.1016/j.jallcom.2016.11.245
    [14] Kim Y, Park H, Shin K, et al. Rational design of coating ions via advantageous surface reconstruction in high-nickel layered oxide cathodes for lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(38): 2101112. doi: 10.1002/aenm.202101112
  • 加载中
图(10)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  46
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-12-04
  • 录用日期:  2023-12-07
  • 网络出版日期:  2023-12-09
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回