留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种快校正磁铁电源设计与仿真

王东兴 黄毛毛 武万锋

王东兴, 黄毛毛, 武万锋. 一种快校正磁铁电源设计与仿真[J]. 强激光与粒子束, 2024, 36: 025015. doi: 10.11884/HPLPB202436.230239
引用本文: 王东兴, 黄毛毛, 武万锋. 一种快校正磁铁电源设计与仿真[J]. 强激光与粒子束, 2024, 36: 025015. doi: 10.11884/HPLPB202436.230239
Wang Dongxing, Huang Maomao, Wu Wanfeng. Design and simulation of a fast corrector magnet power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025015. doi: 10.11884/HPLPB202436.230239
Citation: Wang Dongxing, Huang Maomao, Wu Wanfeng. Design and simulation of a fast corrector magnet power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025015. doi: 10.11884/HPLPB202436.230239

一种快校正磁铁电源设计与仿真

doi: 10.11884/HPLPB202436.230239
详细信息
    作者简介:

    王东兴,wangdongxing@mail.iasf.ac.cn

  • 中图分类号: TL503.5

Design and simulation of a fast corrector magnet power supply

  • 摘要: 快校正磁铁电源是光源和加速器中重要的设备。随着光源性能的提升,加速器对快校正磁铁电源的性能也提出了更高要求。为满足快校正磁铁电源性能要求和简化设计过程,开展了快校正磁铁电源控制策略和仿真研究,并提出了PI控制加二阶相位补偿的方法作为快校正磁铁电源的控制策略;利用伯德图设计快校正磁铁电源的相位补偿参数,以提高电源系统相位裕量。该方法不仅保证了电源系统工作在深度负反馈状态,而且简化了相位补偿的参数计算过程。为了验证控制策略的正确性和有效性,提出用压控电压源代替开关器件开展电源性能仿真的方法。仿真结果验证了上述控制策略的可行性和有效性,同时验证了上述仿真方法的有效性和高效性。
  • 图  1  电源结构及PWM模式

    Figure  1.  Power structure and pattern of PWM

    图  2  电源变换器的信号流图

    Figure  2.  Control frame of power supply converter

    图  3  电源传递函数的伯德图

    Figure  3.  Bode diagrams of system

    图  4  仿真电路图

    Figure  4.  Circuits of simulation

    图  5  两种仿真模型斜坡信号响应及偏差

    Figure  5.  Response of ramping signal and deviation based on two models of simulation

    图  6  频率响应

    Figure  6.  Response of frequency

    表  1  电源设计参数

    Table  1.   Design parameters of power supply

    current/A magnet inductance/μH magnet resistance/mΩ bandwidth/kHz output ripple
    ±15 30 30 2 10−4
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Parameters of simulation

    Ui/V Lm/μH Rm/mΩ f /kHz L1,L2/μH C/μF f1/Hz f3/kHz f4/kHz Kp m
    1 30 30 200 5 30 350 22 220 2000 1
    下载: 导出CSV

    表  3  输出电流纹波测试结果

    Table  3.   Test results of output current ripple based on simulation

    current setting/A ripple peak/μA stability/10−6
    15.0 140 9.33
    10.5 230 15.33
    7.5 275 18.33
    4.5 320 21.33
    1.5 325 21.67
    −1.5 325 21.67
    −4.5 310 20.67
    −7.5 275 18.33
    −10.5 230 15.33
    −15.0 135 9.00
    下载: 导出CSV

    表  4  关键仿真事件统计

    Table  4.   Statistics of key simulation events

    model solver average
    step size
    total
    steps
    run
    time/s
    run/sim
    time
    ratio
    zero
    crossing
    source
    zero crossing
    source
    triggered
    total
    zero
    crossing
    total
    solver
    reset
    total
    solver
    exception
    error
    control
    CVS+delay auto(ode45) 9.74E-07 307937 2.95 9.84 2 1 6430 6431 0 0
    CVS auto(ode45) 9.65E-07 310856 7.90 26.34 2 2 6648 6649 2 2
    MOSFET+PWM auto(ode23tb) 9.76E-09 30727523 492.37 1641.25 12 8 480019 480016 0 0
    MOSFET+PWM
    +delay
    auto(ode23tb) 9.79E-09 30654829 497.68 1658.93 12 5 498466 498464 0 0
    下载: 导出CSV
  • [1] 上海硬X射线自由电子激光装置正式开工建设[J]. 核技术, 2018, 41(5): 99

    Construction of Shanghai high repetition rate X-ray free electron laser and extreme light facility (SHINE) officially started[J]. Nuclear Techniques, 2018, 41(5): 99
    [2] Wang D. SHINE: Shanghai high rep-rate XFEL and extreme light facility[C]//International Computational Accelerator Physics Conference. 2018.
    [3] 吴旭. 衍射极限储存环光源模拟调试研究[D]. 上海: 中国科学院上海应用物理研究所, 2022: 21-23

    Wu Xu. Commissioning simulations of diffraction limited storage ring light source[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2022: 21-23
    [4] 尚雷, 尚风雷, 孙振彪, 等. 先进同步辐射光源特种电源概述[J]. 强激光与粒子束, 2019, 31:040002 doi: 10.11884/HPLPB201931.190044

    Shang Lei, Shang Fenglei, Sun Zhenbiao, et al. Overview of special power supplies for advanced synchrotron radiation source[J]. High Power Laser and Particle Beams, 2019, 31: 040002 doi: 10.11884/HPLPB201931.190044
    [5] 王晓俊. 加速器磁铁电源解析模型最优控制方法[D]. 兰州: 中国科学院近代物理研究所, 2020: 9-10

    Wang Xiaojun. Analytic modeling optimal control method of power supply for accelerator magnet[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2020: 9-10
    [6] 杨新华, 王永强, 李继强, 等. 基于SSOGI-RLSMC联合算法的加速器电源纹波抑制[J]. 原子核物理评论, 2021, 38(1):45-51 doi: 10.11804/NuclPhysRev.38.2020042

    Yang Xinhua, Wang Yongqiang, Li Jiqiang, et al. Accelerator power ripple suppression based on SSOGI-RLSMC combined algorithm[J]. Nuclear Physics Review, 2021, 38(1): 45-51 doi: 10.11804/NuclPhysRev.38.2020042
    [7] 卢军祥, 马保慧, 柳恒敏, 等. 粒子加速器电源PID控制方式的改进型研究与应用[J]. 电气传动自动化, 2021, 43(3):17-21,42 doi: 10.3969/j.issn.1005-7277.2021.03.004

    Lu Junxiang, Ma Baohui, Liu Hengmin, et al. A research and application of improved PID control mode for particle accelerator power supply[J]. Electric Drive Automation, 2021, 43(3): 17-21,42 doi: 10.3969/j.issn.1005-7277.2021.03.004
    [8] Shao Zhuoxia, Liu Peng, Zhang Haiyan, et al. Research on a multilevel corrector magnet power supply based on a buck cascade circuit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953: 163083.
    [9] 周兴文. 基于BBO算法的加速器电源数字控制器的设计与实现[D]. 兰州: 兰州大学, 2020: 22-41

    Zhou Xingwen. Design and implementation of digital controller for accelerator power supply based on BBO algorithm[D]. Lanzhou: Lanzhou University, 2020: 22-41
    [10] 疏坤, 龙锋利, 韩超. 加速器磁铁稳流电源的自适应型控制器设计[J]. 原子能科学技术, 2017, 51(6):1116-1122 doi: 10.7538/yzk.2017.51.06.1116

    Shu Kun, Long Fengli, Han Chao. Self-adaptive controller design for accelerator stabilized magnet power supply[J]. Atomic Energy Science and Technology, 2017, 51(6): 1116-1122 doi: 10.7538/yzk.2017.51.06.1116
    [11] Song B M, Wang Ju. Mathematical modeling and analysis of a wide bandwidth bipolar power supply for the fast correctors in the aps upgrade controller[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 3264-3266.
    [12] 代天立, 张海燕, 邵琢瑕, 等. 合肥光源小功率直流磁铁电源的研究[J]. 强激光与粒子束, 2017, 29:065103 doi: 10.11884/HPLPB201729.160547

    Dai Tianli, Zhang Haiyan, Shao Zhuoxia, et al. Research on NSRL-HLS low power DC magnet power supply[J]. High Power Laser and Particle Beams, 2017, 29: 065103 doi: 10.11884/HPLPB201729.160547
    [13] Liu Kuobin, Liu Chenyao, Wang Baosheng, et al. Reliability assessment and improvement for a fast corrector power supply in TPS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 896: 53-59.
    [14] Belikov O V, Kozak V R. A family of precision power supplies for corrector magnets of the European X-ray free-electron laser[J]. Instruments and Experimental Techniques, 2018, 61(5): 707-712. doi: 10.1134/S0020441218040152
    [15] 刘鹏, 龙锋利, 李洋, 等. 高能同步辐射光源储存环快校正磁铁电源设计[J]. 原子能科学技术, 2020, 54(11):2252-2257

    Liu Peng, Long Fengli, Li Yang, et al. Design of fast corrector magnet power supply for HEPS storage ring[J]. Atomic Energy Science and Technology, 2020, 54(11): 2252-2257
    [16] Liu Peng, Wang Xu, Long Fengli. Fast corrector power supply design for HEPS[J]. Radiation Detection Technology and Methods, 2020, 4(1): 56-62. doi: 10.1007/s41605-019-0149-4
    [17] 王爽, 高朝晖, 陈思宇, 等. 基于Simulink的同步发电机仿真代数环问题研究[J]. 系统仿真学报, 2022, 34(3):482-489 doi: 10.16182/j.issn1004731x.joss.20-0805

    Wang Shuang, Gao Zhaohui, Chen Siyu, et al. Research on algebraic loop of synchronous generator simulation based on Simulink[J]. Journal of System Simulation, 2022, 34(3): 482-489 doi: 10.16182/j.issn1004731x.joss.20-0805
    [18] 张俊峰. 原油换热网络Simulink动态仿真中提高运行速度的问题[J]. 系统仿真技术, 2012, 8(4):321-326 doi: 10.3969/j.issn.1673-1964.2012.04.011

    Zhang Junfeng. Improve the convergent speed in oil heat exchanger networks Simulink dynamic simulation[J]. System Simulation Technology, 2012, 8(4): 321-326 doi: 10.3969/j.issn.1673-1964.2012.04.011
    [19] 耿华, 杨耕. 控制系统仿真的代数环问题及其消除方法[J]. 电机与控制学报, 2006, 10(6):632-635 doi: 10.3969/j.issn.1007-449X.2006.06.020

    Geng Hua, Yang Geng. Algebraic loop problems in simulations of control systems and the methods to avoid it[J]. Electric Machines and Control, 2006, 10(6): 632-635 doi: 10.3969/j.issn.1007-449X.2006.06.020
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  111
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-11-04
  • 录用日期:  2023-11-04
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回