留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无风条件下近地爆烟尘的大气γ电离辐射环境模拟

郭思禹 程引会 郭俊

郭思禹, 程引会, 郭俊. 无风条件下近地爆烟尘的大气γ电离辐射环境模拟[J]. 强激光与粒子束, 2024, 36: 043027. doi: 10.11884/HPLPB202436.230245
引用本文: 郭思禹, 程引会, 郭俊. 无风条件下近地爆烟尘的大气γ电离辐射环境模拟[J]. 强激光与粒子束, 2024, 36: 043027. doi: 10.11884/HPLPB202436.230245
Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027. doi: 10.11884/HPLPB202436.230245
Citation: Guo Siyu, Cheng Yinhui, Guo Jun. Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions[J]. High Power Laser and Particle Beams, 2024, 36: 043027. doi: 10.11884/HPLPB202436.230245

无风条件下近地爆烟尘的大气γ电离辐射环境模拟

doi: 10.11884/HPLPB202436.230245
详细信息
    作者简介:

    郭思禹,q1203941245@stu.xjtu.edu.cn

    通讯作者:

    郭 俊,junguo@mail.xjtu.edu.cn

  • 中图分类号: TL91;TL72

Simulation of atmospheric γ ionizing radiation environment of near-ground nuclear explosion fallout under windless conditions

  • 摘要: 近地爆烟尘由不同粒径尺度的放射性颗粒组成,且运动的时空尺度大。针对近地爆烟尘的大气γ电离辐射环境模拟这一难题,首先开展了γ大气辐射机理分析,进行了无风条件设定,建立了烟尘γ辐射的理论模型,其次引入和提出了相应的数值差分与积分算法,最后给出了对1 000 kt内华达近地爆烟尘在大气中的放射性活度和辐射剂量率的模拟算例,完成了一定的辐射环境时空演变规律总结与结果对比,对比发现本模型在保证活度结果一致性的同时,能计算出大气辐射剂量率的理论最大值。
  • 图  1  点源辐射模型示意图

    Figure  1.  Schematic diagram of point source radiation model

    图  2  体源辐射模型示意图

    Figure  2.  Schematic diagram of body source radiation model

    图  3  1000 kt内华达近地爆烟尘的放射性活度

    Figure  3.  Radioactivity of 1000 kt Nevada near-ground nuclear explosion fallout

    图  4  1000 kt内华达近地爆烟尘的辐射剂量率

    Figure  4.  Radiative dose rate of 1000 kt Nevada near-ground nuclear explosion fallout

    图  5  两模型间放射性活度轴向密度的对比

    Figure  5.  Comparison of axial density of radioactive activity between two models

    图  6  两模型间对称轴处辐射剂量率的对比

    Figure  6.  Comparison of radiation dose rate at symmetry axis between two models

    表  1  烟尘50个颗粒群的粒径区间及中值粒径

    Table  1.   Range and median particle size of 50 particle groups of fallout

    range of particle
    diameters/μm
    median particle
    diameter dm/μm
    range of particle
    diameters/μm
    median particle
    diameter dm/μm
    range of particle
    diameters/μm
    median particle
    diameter dm/μm
    1~2.547 1.596 36.10~39.57 37.80 152.8~166.8 159.6
    2.547~3.916 3.158 39.57~43.29 41.39 166.8~182.6 174.5
    3.916~5.296 4.554 43.29~47.27 45.23 182.6~200.3 191.2
    5.296~6.730 5.970 47.27~51.54 49.36 200.3~220.4 210.1
    6.730~8.239 7.446 51.54~56.13 53.78 220.4~243.3 231.6
    8.239~9.837 9.003 56.13~61.06 58.54 243.3~269.8 256.2
    9.837~11.53 10.65 61.06~66.37 63.66 269.8~300.7 284.8
    11.53~13.34 12.40 66.37~72.11 69.18 300.7~337.3 318.5
    13.34~15.26 14.27 72.11~78.30 75.14 337.3~381.3 358.6
    15.26~17.32 16.26 78.30~85.01 81.58 381.3~435.5 407.5
    17.32~19.50 18.38 85.01~92.28 88.57 435.5~503.9 468.5
    19.50~21.84 20.64 92.28~100.2 96.16 503.9~593.8 547.0
    21.84~24.33 23.05 100.2~108.8 104.4 593.8~718.2 653.0
    24.33~26.98 25.62 108.8~118.3 113.5 718.2~904.7 806.1
    26.98~29.82 28.37 118.3~128.7 123.4 904.7~1227.0 1054.0
    29.82~32.86 31.30 128.7~140.1 134.3 1227.0~2000.0 1567.0
    32.86~36.10 34.44 140.1~152.8 146.3
    下载: 导出CSV
  • [1] 郑毅, 李鹏, 耿娜, 等. 核爆炸监测技术概论[M]. 北京: 国防工业出版社, 2019

    Zheng Yi, Li Peng, Geng Na, et al. Introduction to nuclear explosion monitoring technology[M]. Beijing: National Defense Industry Press, 2019
    [2] 郑毅, 张彦, 应纯同. 基于中尺度气象模式的放射性爆炸烟云模拟[J]. 原子能科学技术, 2008, 42(s1):371-374

    Zheng Yi, Zhang Yan, Ying Chuntong. Mesoscale meteorological model based on radioactive explosion cloud simulation[J]. Atomic Energy Science and Technology, 2008, 42(s1): 371-374
    [3] 乔登江. 核爆炸物理概论[M]. 北京: 原子能出版社, 1988

    Qiao Dengjiang. Introduction to nuclear explosion physics[M]. Beijing: Atomic Energy Press, 1988
    [4] Glasstone S, Dolan P J. The effects of nuclear weapons[M]. Washington: United States Department of Defense, United States Department of Energy, 1977.
    [5] 卓俊, 黄流兴, 牛胜利, 等. 基于气固两相流模拟的核爆炸放射性沾染预测方法: 111651872A[P]. 2020-09-11

    Zhuo Jun, Huang Liuxing, Niu Shengli, et al. A method for predicting radioactive contamination in nuclear explosions based on gas-solid two-phase flow simulation: 111651872A[P]. 2020-09-11
    [6] Norment H G. DELFIC: department of defense fallout prediction system. Volume II. User’s manual[R]. Bedford: Atmospheric Science Associates, 1979.
    [7] Englert J W. In-line particulate transport and dispersion modeling using the regional atmospheric modeling system (RAMS)[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2005.
    [8] Schofield J C H. Mapping nuclear fallout using the weather research & forecasting (WRF) model[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2012.
    [9] Lundquist K A, Arthur R S, Neuscamman S, et al. Examining the effects of soil entrainment during nuclear cloud rise on fallout predictions using a multiscale atmospheric modeling framework[J]. Journal of Environmental Radioactivity, 2023, 270: 107299. doi: 10.1016/j.jenvrad.2023.107299
    [10] Zheng Yang, Liu Wei, Li Xiaoqiang, et al. Prediction and analysis of nuclear explosion radioactive pollutant diffusion model[J]. Pollutants, 2023, 3(1): 43-56. doi: 10.3390/pollutants3010004
    [11] Conners S P. Aircrew dose and engine dust ingestion from nuclear cloud penetration[D]. Wright-Patterson AFB: Air Force Institute of Technology, 1985.
    [12] Garcia F E. Aircrew ionizing doses from nuclear weapon bursts[D]. Wright-Patterson AFB: Air Force Institute of Technology, 2001.
    [13] 葛宝珠, 陆芊芊, 陈学舜, 等. 放射性核素大气扩散数值模拟研究综述[J]. 环境科学学报, 2021, 41(5):1599-1609

    Ge Baozhu, Lu Qianqian, Chen Xueshun, et al. A review of the numerical simulations of the atmospheric dispersion of radionuclides[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1599-1609
    [14] Girard S, Mallet V, Korsakissok I, et al. Emulation and Sobol’ sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(7): 3484-3496. doi: 10.1002/2015JD023993
    [15] Bridgman C J, Bigelow W S. A new fallout prediction model[J]. Health Physics, 1982, 43(2): 205-218. doi: 10.1097/00004032-198208000-00002
    [16] Norment H G. DELFIC: department of defense fallout prediction system. Volume I - fundamentals[R]. Bedford: Atmospheric Science Associates, 1979.
    [17] Grell G A, Dudhia J, Stauffer D R. A description of the fifth-generation Penn State/NCAR Mesoscale model (MM5)[R]. NCAR Technical Note No. NCAR/TN-398+STR, 1994.
    [18] Fan L S, Zhu Chao. 气固两相流原理(上)[M]. 张学旭, 译. 北京: 科学出版社, 2018

    Fan L S, Zhu Chao. Principles of gas-solid flows (Ⅰ)[M]. Zhang Xuexu, trans. Beijing: Science Press, 2018
    [19] Kanarska Y, Lomov I, Glenn L, et al. Numerical simulation of cloud rise phenomena associated with nuclear bursts[J]. Annals of Nuclear Energy, 2009, 36(10): 1475-1483. doi: 10.1016/j.anucene.2009.08.009
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  44
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2023-12-19
  • 录用日期:  2023-12-19
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回