留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S波段永磁式相对论磁控管设计及实验研究

张颜颜 陈宏 许建军 邓坤 刘东升 刘巧

张颜颜, 陈宏, 许建军, 等. S波段永磁式相对论磁控管设计及实验研究[J]. 强激光与粒子束, 2024, 36: 033007. doi: 10.11884/HPLPB202436.230250
引用本文: 张颜颜, 陈宏, 许建军, 等. S波段永磁式相对论磁控管设计及实验研究[J]. 强激光与粒子束, 2024, 36: 033007. doi: 10.11884/HPLPB202436.230250
Zhang Yanyan, Chen Hong, Xu Jianjun, et al. Design and experimental study of S-band permanent magnet relativistic magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 033007. doi: 10.11884/HPLPB202436.230250
Citation: Zhang Yanyan, Chen Hong, Xu Jianjun, et al. Design and experimental study of S-band permanent magnet relativistic magnetron[J]. High Power Laser and Particle Beams, 2024, 36: 033007. doi: 10.11884/HPLPB202436.230250

S波段永磁式相对论磁控管设计及实验研究

doi: 10.11884/HPLPB202436.230250
详细信息
    作者简介:

    张颜颜,zyy_25043010@163.com

    通讯作者:

    刘 巧,q.liu.ah@outlook.com

  • 中图分类号: TN123

Design and experimental study of S-band permanent magnet relativistic magnetron

  • 摘要: 对S波段永磁式全腔提取相对论磁控管进行了理论设计和数值模拟研究,并对其进行了实验研究。通过理论分析初步获取相对论磁控管结构参数,并采用三维电磁仿真软件对模型进行粒子仿真优化,根据引导磁场需求设计永磁磁场产生结构。该永磁式相对论磁控管在500 kV电压输入条件下,输出微波功率1.978 GW,效率49.2%。利用实验室小型脉冲功率驱动源平台开展了初步实验研究。实验中,该永磁式相对论磁控管在脉冲驱动源驱动下获得GW级输出功率,功率转换效率约40%,实验结果与模拟结果吻合得较好。
  • 图  1  全腔提取相对论磁控管结构模型

    Figure  1.  Geometry of the all cavity extraction relativistic magnetron

    图  2  中心轴线处磁场分布

    Figure  2.  Magnetic field distribution at the central axis

    图  3  横向电子轮辐分布

    Figure  3.  Distribution of electrons in the x-y section

    图  4  输出微波功率波形

    Figure  4.  Output microwave power vs. time

    图  5  磁场测试框图

    Figure  5.  Block diagram of magnetic field test

    图  6  永磁式微波源实物图及归一化轴向磁场分布

    Figure  6.  The permanent magnet and the normalized axial magnetic field distribution

    图  7  实测系统框图

    Figure  7.  Schematic of the experimental setup

    图  8  驱动电压波形、典型微波信号及频谱图

    Figure  8.  Typical driving voltage waveform, microwave signal and spectrum diagram

  • [1] 肖开奇, 张锡祥, 陈宏. 高功率微波武器系统及其发展趋势[J]. 电子对抗, 2021, 199(4):1-12

    Xiao Kaiqi, Zhang Xixiang, Chen Hong. High power microwave weapon system and its development trend[J]. Electronic Warfare, 2021, 199(4): 1-12
    [2] 陈宏, 肖开奇, 张颜颜. 高功率微波武器外军应用现状[J]. 电子对抗, 2021, 199(4):13-20

    Chen Hong, Xiao Kaiqi, Zhang Yanyan. Present situation of application of high power microwave weapon to foreign military[J]. Electronic Warfare, 2021, 199(4): 13-20
    [3] 张颜颜, 陈宏, 鄢振麟, 等. 高功率微波反无人机技术[J]. 电子信息对抗技术, 2020, 35(4):39-43

    Zhang Yanyan, Chen Hong, Yan Zhenlin, et al. The technology of high-power microwave anti-bee swarm drone[J]. Electronic information Warfare Technology, 2020, 35(4): 39-43
    [4] 孔令岩, 木木, 王俊. 探秘美国新型高功率微波武器[J]. 军事文摘, 2020(9):49-52

    Kong Lingyan, Mu Mu, Wang Jun. Explore the new high power microwave weapons of the United States[J]. Military Digest, 2020(9): 49-52
    [5] 李天明. 相对论磁控管的理论与实验研究[D]. 成都: 电子科技大学, 2005

    Li Tianming. Theoretical and experimental research of relativistic magnetron[D]. Chengdu: University of Electronic Science and Technology of China, 2005
    [6] 王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009: 4

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009: 4
    [7] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2015.
    [8] Lopez M R, Gilgenbach R M, Jordan D W, et al. Cathode effects on a relativistic magnetron driven by a microsecond e-beam accelerator[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 947-955. doi: 10.1109/TPS.2002.801543
    [9] Leach C, Prasad S, Fuks M I, et al. Compact relativistic magnetron with Gaussian radiation pattern[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3116-3120. doi: 10.1109/TPS.2012.2212910
    [10] Li Wei, Liu Yonggui, Shu Ting, et al. Experimental demonstration of a compact high efficient relativistic magnetron with directly axial radiation[J]. Physics of Plasmas, 2012, 19: 013105. doi: 10.1063/1.3677882
    [11] Daimon M, Itoh K, Imada G, et al. Experimental demonstration of relativistic magnetron with modified output configuration[J]. Applied Physics Letters, 2008, 92: 191504. doi: 10.1063/1.2930684
    [12] Fuks M I, Kovalev N F, Andreev A D, et al. Mode conversion in a magnetron with axial extraction of radiation[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 620-626. doi: 10.1109/TPS.2006.875770
    [13] Li Wei, Liu Yonggui. Modified magnetic field distribution in relativistic magnetron with diffraction output for compact operation[J]. Physics of Plasmas, 2011, 18: 023103. doi: 10.1063/1.3551759
    [14] Saveliev Y M, Kerr B A, Harbour M I, et al. Operation of a relativistic rising-sun magnetron with cathodes of various diameters[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 938-946. doi: 10.1109/TPS.2002.801652
    [15] Hoff B W, Greenwood A D, Mardahl P J, et al. All cavity-magnetron axial extraction technique[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 3046-3051. doi: 10.1109/TPS.2012.2217758
  • 加载中
图(8)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  33
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2024-01-22
  • 录用日期:  2023-01-23
  • 网络出版日期:  2024-02-05
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回