留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气流对飞秒激光加工炸药装药过程的热安全性影响分析

伍俊英 郑富德 姚雨乐 刘嘉锡 陈朗

伍俊英, 郑富德, 姚雨乐, 等. 气流对飞秒激光加工炸药装药过程的热安全性影响分析[J]. 强激光与粒子束, 2024, 36: 011003. doi: 10.11884/HPLPB202436.230256
引用本文: 伍俊英, 郑富德, 姚雨乐, 等. 气流对飞秒激光加工炸药装药过程的热安全性影响分析[J]. 强激光与粒子束, 2024, 36: 011003. doi: 10.11884/HPLPB202436.230256
Wu Junying, Zheng Fude, Yao Yule, et al. Analysis of thermal safety impact of airflow on the process of femtosecond laser processing explosive charge[J]. High Power Laser and Particle Beams, 2024, 36: 011003. doi: 10.11884/HPLPB202436.230256
Citation: Wu Junying, Zheng Fude, Yao Yule, et al. Analysis of thermal safety impact of airflow on the process of femtosecond laser processing explosive charge[J]. High Power Laser and Particle Beams, 2024, 36: 011003. doi: 10.11884/HPLPB202436.230256

气流对飞秒激光加工炸药装药过程的热安全性影响分析

doi: 10.11884/HPLPB202436.230256
基金项目: 爆炸科学与技术国家重点实验室开放基金项目(KFJJ20-04M)
详细信息
    作者简介:

    伍俊英,wjy1312@bit.edu.cn

  • 中图分类号: TG55

Analysis of thermal safety impact of airflow on the process of femtosecond laser processing explosive charge

  • 摘要: 由于炸药具有热传导系数小、对温度极其敏感的特点,在使用多脉冲飞秒激光对其进行持续加工时,极有可能在炸药内形成热累积,从而导致点火、燃烧等危险事件的发生。为了降低激光加工材料过程中的热效应,人们普遍采取在材料加工表面施加气流的方法。为了研究加载气流条件下,炸药装药在飞秒激光作用下产生的烧蚀产物的运动规律以及炸药装药内部的温度变化,建立了加载气流条件下飞秒激光加工炸药装药过程的二维流固耦合计算模型,对在单侧、双侧不同入射角度的亚音速气流作用下,飞秒激光加工奥克托今(HMX)炸药装药的过程进行了数值模拟计算。计算结果表明:单侧气流会在炸药加工表面形成漩涡流,导致烧蚀气体产物在炸药表面做旋转运动,加重了烧蚀产物对炸药的热影响;双侧气流会在远离炸药加工表面的地方形成较大的漩涡流,从而使烧蚀气体产物迅速离开炸药加工表面,有效降低了炸药的温度,提高了飞秒激光加工炸药装药过程的安全性。
  • 图  1  切向气流作用下,飞秒激光烧蚀炸药装药过程的物理模型示意图

    Figure  1.  Schematic diagram of the physical model of the ablation of explosive charge by femtosecond laser under the action of tangential airflow

    图  2  切向气流作用下,飞秒激光烧蚀炸药装药的计算模型示意图

    Figure  2.  Schematic diagram of calculation model of the ablation of explosive charge by femtosecond laser under the action of tangential airflow

    图  3  不同入射角度的单侧气流作用下,空气域中流场速度的分布

    Figure  3.  Velocity distribution of flow field in air under the action of unilateral airflow at different incidence angles

    图  4  45°单侧气流作用下,炸药表面监测点处的温度-时间变化曲线

    Figure  4.  Temperature-time curves at the monitoring points on the surface of the explosive under the action of 45° unilateral airflow

    图  5  不同入射角度的双侧气流作用下,空气域中流场速度的分布

    Figure  5.  Velocity distribution of flow field in the air domain under the action of bilateral airflow at different incidence angles

    图  6  无外加气流时流场的分布

    Figure  6.  Distribution of flow field without the action of external airflow

    图  7  45°双侧气流作用下,空气域中烧蚀气体产物的分布

    Figure  7.  Distribution of ablative gas products in the air domain under the action of 45° bilateral airflow

    图  8  45°双侧气流作用下,空气域中流场温度的分布

    Figure  8.  Temperature distribution of flow field in air under the action of 45° bilateral airflow

    图  9  45°双侧气流作用下,HMX炸药装药未烧蚀区域内的温度分布

    Figure  9.  Temperature distribution in the non-ablated area of HMX under the action of 45° bilateral airflow

    图  10  不同入射角度的双侧气流作用下,监测点温度-时间变化的曲线

    Figure  10.  Temperature-time curves of monitoring points under the action of bilateral airflow at different incidence angles

    表  1  HMX的多步热分解反应动力学参数

    Table  1.   Kinetic parameters of multi-step thermal decomposition reaction of HMX

    explosive reaction step E/(kJ·mol−1) Z/s−1 Q/(kJ·kg−1)
    HMX 1 204 7.99×1020 −42
    2 221 1.41×1021 −252
    3 186 2.61×1016 559
    4 143 1.60×1012 5620
    下载: 导出CSV

    表  2  HMX的物性参数

    Table  2.   Physical properties of HMX

    density/
    (kg·m−3)
    specific thermal
    capacity/(J·kg−1·K−1)
    thermal conductivity/
    (W·m−1·K−1)
    absorption
    coefficient/m−1
    reflection
    coefficient
    thermal diffusion
    coefficient/(m2·s−1)
    1 905 1050 0.345 1.434×106 0.090 1.72×10−7
    下载: 导出CSV
  • [1] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料[J]. 物理学报, 2013, 62:060601 doi: 10.7498/aps.62.060601

    Wang Wenting, Hu Bing, Wang Mingwei. Femtosecond laser fine machining of energetic materials[J]. Acta Physica Sinica, 2013, 62: 060601 doi: 10.7498/aps.62.060601
    [2] 李全俊, 王国辉, 雷林, 等. 废旧弹药拆分技术现状与发展[J]. 兵工自动化, 2018, 37(5):93-96

    Li Quanjun, Wang Guohui, Lei Lin, et al. Present situation and development of waste ammunition decomposition technology[J]. Ordnance Industry Automation, 2018, 37(5): 93-96
    [3] Roos E V, Benterou J J, Lee R S, et al. Femtosecond laser interaction with energetic materials[C]//Proceedings of SPIE 4760, High-Power Laser Ablation IV. 2002: 415-423.
    [4] Roeske F, Benterou J, Lee R, et al. Cutting and machining energetic materials with a femtosecond laser[J]. Propellants, Explosives, Pyrotechnics, 2003, 28(2): 53-57. doi: 10.1002/prep.200390008
    [5] Boley C D, Cutter K P, Fochs S N, et al. Interaction of a high-power laser beam with metal sheets[J]. Journal of Applied Physics, 2010, 107: 043106. doi: 10.1063/1.3284204
    [6] 李君神. 切向气流环境中激光辐照下薄铝板响应初步研究[D]. 长沙: 国防科学技术大学, 2012

    Li Junshen. Preliminary research on the response of thin aluminum plate subjected to laser irradiation and tangential gas flow[D]. Changsha: National University of Defense Technology, 2012
    [7] 张永强, 陶彦辉, 张黎. 亚声速切向气流对激光辐照TA15钛合金热响应的影响[J]. 应用激光, 2014, 34(1):32-35 doi: 10.3788/AL20143401.0032

    Zhang Yongqiang, Tao Yanhui, Zhang Li. Effect of subsonic tangential flow on the thermal response of TA15 Ti alloy irradiated by laser[J]. Applied Laser, 2014, 34(1): 32-35 doi: 10.3788/AL20143401.0032
    [8] 蒙文, 张文杰, 李云霞, 等. 切向气流作用下激光辐照对尼龙材料的热烧蚀规律[J]. 光学 精密工程, 2017, 25(2):351-357 doi: 10.3788/OPE.20172502.0351

    Meng Wen, Zhang Wenjie, Li Yunxia, et al. Thermal ablation law of laser irradiation on nylon materials under tangential airflow[J]. Optics and Precision Engineering, 2017, 25(2): 351-357 doi: 10.3788/OPE.20172502.0351
    [9] Yamamoto R, Parker J, Boley C D, et al. Laser-material interaction studies utilizing the solid-state heat capacity laser[R]. Livermore: Lawrence Livermore National Laboratory, 2007.
    [10] Boley C D, Fochs S N, Rubenchik A M. Lethality effects of a high-power solid-state laser[R]. Livermore: Lawrence Livermore National Laboratory, 2007.
    [11] Boley C D, Fochs S N, Rubenchik A M. Large-spot material interactions with a high-power solid-state laser beam[R]. Livermore: Lawrence Livermore National Laboratory, 2008.
    [12] 张健, 黄晨光. 外部流场对激光加热运动目标影响的数值模拟[J]. 强激光与粒子束, 2007, 19(11):1817-1821

    Zhang Jian, Huang Chenguang. Numerical simulation of airflow effect on moving body under laser irradiation[J]. High Power Laser and Particle Beams, 2007, 19(11): 1817-1821
    [13] 陈敏孙, 江厚满, 刘泽金. 切向气流对激光辐照树脂基复合材料的影响[J]. 强激光与粒子束, 2010, 22(12):2848-2852 doi: 10.3788/HPLPB20102212.2848

    Chen Minsun, Jiang Houman, Liu Zejin. Effect of tangential airflow on resin composite irradiated by laser[J]. High Power Laser and Particle Beams, 2010, 22(12): 2848-2852 doi: 10.3788/HPLPB20102212.2848
    [14] 胡鹏, 陈发良. 高速气流中激光加热平板数值模拟与分析[J]. 强激光与粒子束, 2011, 23(7):1935-1939 doi: 10.3788/HPLPB20112307.1935

    Hu Peng, Chen Faliang. Numerical simulation of plane target in airflow under laser irradiation[J]. High Power Laser and Particle Beams, 2011, 23(7): 1935-1939 doi: 10.3788/HPLPB20112307.1935
    [15] 赵晓利, 孙振旭, 安亦然, 等. 高超声速气动热的耦合计算方法研究[J]. 科学技术与工程, 2010, 10(22):5450-5455,5461

    Zhao Xiaoli, Sun Zhenxu, An Yiran, et al. Coupled flow-thermal analysis approach for hypersonic aerodynamic heating[J]. Science Technology and Engineering, 2010, 10(22): 5450-5455,5461
    [16] 李鹏飞, 吴颂平. 二维圆柱在高超声速气流中的耦合传热计算[J]. 导弹与航天运载技术, 2010(6):34-37

    Li Pengfei, Wu Songping. Coupling calculation of heat conduction in 2D column in hypersonic flows[J]. Missiles and Space Vehicles, 2010(6): 34-37
    [17] 刘嘉锡, 伍俊英, 杨利军, 等. 单脉冲飞秒激光烧蚀炸药过程的热效应研究[J]. 强激光与粒子束, 2020, 32:071007 doi: 10.11884/HPLPB202032.200061

    Liu Jiaxi, Wu Junying, Yang Lijun, et al. Analysis of thermal effect on explosives of single-pulse femtosecond laser ablation[J]. High Power Laser and Particle Beams, 2020, 32: 071007 doi: 10.11884/HPLPB202032.200061
    [18] 刘嘉锡. 飞秒激光烧蚀炸药过程的热力响应机理和作用规律研究[D]. 北京: 北京理工大学, 2022

    Liu Jiaxi. Thermodynamic mechanism and action law of femtosecond laser ablation of explosive[D]. Beijing: Beijing Institute of Technology, 2022
    [19] 张金龙, 郭子如, 杜明燃, 等. RDX的爆炸产物组成和爆热的计算与分析[J]. 煤矿爆破, 2019, 37(4):24-27

    Zhang Jinlong, Guo Ziru, Du Mingran, et al. Calculation and analysis of explosive product composition and heat of RDX[J]. Coal Mine Blasting, 2019, 37(4): 24-27
    [20] Tarver C M, Tran T D. Thermal decomposition models for HMX-based plastic bonded explosives[J]. Combustion and Flame, 2004, 137(1/2): 50-62.
    [21] 陈朗, 马欣. 炸药热安全性理论与分析方法[M]. 北京: 国防工业出版社, 2015

    Chen Lang, Ma Xin. Theory and analysis method of thermal safety of explosive[M]. Beijing: National Defense Industry Press, 2015
    [22] 杨利军. 飞秒激光烧蚀炸药的作用机理研究[D]. 北京: 北京理工大学, 2021

    Yang Lijun. Mechanism of femtosecond laser ablation of explosive[D]. Beijing: Beijing Institute of Technology, 2021
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  304
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-12-08
  • 录用日期:  2023-12-08
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回