留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光导微波源阵列合成时控技术初步研究

牛昕玥 谷炎然 楚旭 姚金妹 易木俣 王朗宁 荀涛

牛昕玥, 谷炎然, 楚旭, 等. 光导微波源阵列合成时控技术初步研究[J]. 强激光与粒子束, 2024, 36: 013005. doi: 10.11884/HPLPB202436.230260
引用本文: 牛昕玥, 谷炎然, 楚旭, 等. 光导微波源阵列合成时控技术初步研究[J]. 强激光与粒子束, 2024, 36: 013005. doi: 10.11884/HPLPB202436.230260
Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005. doi: 10.11884/HPLPB202436.230260
Citation: Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005. doi: 10.11884/HPLPB202436.230260

光导微波源阵列合成时控技术初步研究

doi: 10.11884/HPLPB202436.230260
基金项目: 国家自然科学基金项目(62071477、62101577);湖南省自然科学基金项目(2021JJ40660)
详细信息
    作者简介:

    牛昕玥,xinyuee.niu@outlook.com

    通讯作者:

    姚金妹,yao_jinmei@163.com

    荀 涛,xtao_0301@hotmail.com

  • 中图分类号: TN78

Primary study on time control technology of active phased array based on photoconductive microwave source

  • 摘要: 基于宽禁带光导半导体的固态光导微波源是高功率微波产生的一种新途径,该方案具有功率密度高、频带范围宽等特点,且其低时间抖动特性使其在功率合成方面具有巨大潜力,利用光波束形成网络构建光导微波有源相控阵是光导微波器件迈向实用的重要途径。分析了光导微波相控阵系统原理,设计了光导微波真延时网络架构,并构建了差分真延时相控阵和考虑相位随机误差的真延时相控阵的理论模型,对影响功率合成和波束扫描的关键因素开展定量分析和仿真验证。结果表明,对于发射1 GHz信号的n×10阵列,延时均方差在10 ps以下时,指向偏差小于0.13°,峰值增益损耗小于2%;延时步进精度在10 ps以下时,指向偏差小于0.2°,峰值增益损耗小于0.03%。由此提出延时精度指标,为未来更高功率、更大规模的光导微波合成技术发展提供参考。
  • 图  1  基于线性SiC器件的光控相控阵系统架构示意图,其中包括光电转换模块和簇发模式脉冲激光器模块

    Figure  1.  Scheme of the optically controlled phased array system based on linear SiC devices, including thephotoelectric conversion components and the burst-mode operation pulse laser

    图  2  光控相控阵系统架构展望,其中激光器模块采用全光纤方案实现分光、延时与放大

    Figure  2.  Scheme of the optically controlled phased array system in the future, where the optical signal is delayed first and then amplified

    图  3  光延时方案示意图

    Figure  3.  Optical time delay architecture

    图  4  相控阵天线理论模型

    Figure  4.  Theoretical model of phased array antenna

    图  5  考虑差分延时步进的光真延时相控阵列分析结果

    Figure  5.  Analysis results of OTTD phased array considering time delay step

    图  6  考虑延时误差的光真延时相控阵列分析结果

    Figure  6.  Analysis results of OTTD phased array considering time delay error

    图  7  CST仿真结果中,旁瓣增益的增加值,平均波束偏斜角度和主瓣峰值功率的下降值

    Figure  7.  Increment of beam sidelobe power, average beam squint and reduction of beam peak power against phase standard deviation in the simulation result in CST

    表  1  对于1×n阵列,功率合成损耗小于10%时对应的时延均方差

    Table  1.   Delay variance when the loss is less than 10% for a 1×n array antenna

    number of array elements90% of the theoretical gain/dBtime delay index at 1 GHz/pstime delay index at 3 GHz/ps
    1×411.58269
    1×817.63010
    1×1019.543211
    下载: 导出CSV

    表  2  对于m×n面阵,功率合成损耗小于10%时对应的时延均方差

    Table  2.   Delay variance when the loss is less than 10% for a m×n array antenna

    number of array elements90% of the theoretical gain/dBtime delay index at 1 GHz/pstime delay index at 3 GHz/ps
    2×417.62910
    8×835.674113-14
    8×1037.64313-14
    下载: 导出CSV

    表  3  相位均方差对相控阵列关键指标的影响

    Table  3.   Influence of phase variance on the key indicators of phased array

    phase standard deviation/(°)element numberbeam squint/(°)main lobe power/dBside lobe power/dB
    10100.40−0.10+3.00
    15100.64−0.22+4.64
    20100.94−0.40+5.95
    下载: 导出CSV
  • [1] Kelkar K S, Islam N E, Fessler C M, et al. Design and characterization of silicon carbide photoconductive switches for high field applications[J]. Journal of Applied Physics, 2006, 100: 124905. doi: 10.1063/1.2365713
    [2] Sullivan J S, Stanley J R. Wide bandgap extrinsic photoconductive switches[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2528-2532. doi: 10.1109/TPS.2008.2002147
    [3] Majda-Zdancewicz E, Suproniuk M, Pawłowski M, et al. Current state of photoconductive semiconductor switch engineering[J]. Opto-Electronics Review, 2018, 26(2): 92-102. doi: 10.1016/j.opelre.2018.02.003
    [4] Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4: 1600501. doi: 10.1002/aelm.201600501
    [5] Rakheja S, Huang L, Hau-Riege S, et al. Performance modeling of silicon carbide photoconductive switches for high-power and high-frequency applications[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 1118-1128. doi: 10.1109/JEDS.2020.3022031
    [6] Zhu Li, Hu Long, Shen Xin, et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode[J]. IEEE Electron Device Letters, 2023, 44(2): 289-292. doi: 10.1109/LED.2022.3227174
    [7] Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
    [8] Xiao Longfei, Yang Xianglong, DuanPeng, et al. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption[J]. Applied Optics, 2018, 57(11): 2804-2808. doi: 10.1364/AO.57.002804
    [9] Wang Langning, Chu Xu, Wu Qilin, et al. Effects of high-field velocity saturation on the performance of V-doped 6H silicon carbide photoconductiveswitches[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4879-4886. doi: 10.1109/JESTPE.2020.3038561
    [10] He Xuan, Zhang Bin, Liu Shuailin, et al. High-power linear-polarization burst-mode all-fibre laser and generation of frequency-adjustable microwave signal[J]. High Power Laser Science and Engineering, 2021, 9: e13. doi: 10.1017/hpl.2021.11
    [11] Shi Nuannuan, Li Wei, Zhu Ninghua, et al. Optically controlled phase array antenna [Invited][J]. Chinese Optics Letters, 2019, 17: 052301. doi: 10.3788/COL201917.052301
    [12] 何梓昂, 徐嘉鑫, 周涛, 等. 宽带恒定束宽光学多波束形成技术研究[J]. 半导体光电, 2022, 43(1):51-55

    He Zi’ang, Xu Jiaxin, Zhou Tao, et al. Study on wideband constant beamwidth optical multi-beam forming technologies[J]. Semiconductor Optoelectronics, 2022, 43(1): 51-55
    [13] Zhao Qingchao, Zhang Yi, Wang Wei, et al. On the frequency dispersion in DBF SAR and digital scalloped beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3619-3632. doi: 10.1109/TGRS.2019.2958863
    [14] Ye Xingwei, Zhang Fangzheng, Pan Shilong. Optical true time delay unit for multi-beamforming[J]. Optics Express, 2015, 23(8): 10002-10008. doi: 10.1364/OE.23.010002
    [15] Zheng Pengfei, Wang Chenquan, Xu Xuemeng, et al. A seven bit silicon optical true time delay line for Ka-band phased array antenna[J]. IEEE Photonics Journal, 2019, 11(4): 1-9.
    [16] Cheng Qiman, Zheng Shilie, Zhang Qiang, et al. An integrated optical beamforming network for two-dimensional phased array radar[J]. Optics Communications, 2021, 489: 126809. doi: 10.1016/j.optcom.2021.126809
    [17] Li Shupeng, Wang Xiangchuan, Qing Ting, et al. Optical fiber transfer delay measurement based on phase-derived ranging[J]. IEEE Photonics Technology Letters, 2019, 31(16): 1351-1354. doi: 10.1109/LPT.2019.2926508
    [18] 王邦继, 刘庆想, 周磊, 等. 相控阵天线主控系统中实时数据交互[J]. 强激光与粒子束, 2018, 30:013003 doi: 10.11884/HPLPB201830.170289

    Wang Bangji, Liu Qingxiang, Zhou Lei, et al. Real-time data exchange of beam steering system for phased array antenna[J]. High Power Laser and Particle Beams, 2018, 30: 013003 doi: 10.11884/HPLPB201830.170289
    [19] 田中成, 靳学明, 朱玉鹏. 微波光子电子战技术原理与应用[M]. 北京: 科学出版社, 2018: 30-32

    Tian Zhongcheng, Jin Xueming, Zhu Yupeng. Principle and application of microwave photonic electronic warfare technology[M]. Beijing: Science Press, 2018: 30-32
    [20] Yu Anliang, Zou Weiwen, Li Shuguang, et al. A multi-channel multi-bit programmable photonic beamformer based on cascaded DWDM[J]. IEEE Photonics Journal, 2014, 6(4): 1-10.
    [21] Bliek L, Wahls S, Visscher I, et al. Automatic delay tuning of a novel ring resonator-based photonic beamformer for a transmit phased array antenna[J]. Journal of Lightwave Technology, 2019, 37(19): 4976-4984. doi: 10.1109/JLT.2019.2926621
    [22] 田博宇, 彭英楠, 胡奇琪, 等. 光学相控阵技术研究进展与发展趋势[J]. 强激光与粒子束, 2023, 35:041001 doi: 10.11884/HPLPB202335.220305

    Tian Boyu, Peng Yingnan, Hu Qiqi, et al. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35: 041001 doi: 10.11884/HPLPB202335.220305
    [23] 王建, 蔡海文, 杨飞, 等. 光控微波波束形成器: CN103414519B[P]. 2016-09-07

    Wang Jian, Cai Haiwen, Yang Fei, et al. Optically controlled microwave beamformers: CN103414519B[P]. 2016-09-07
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  485
  • HTML全文浏览量:  267
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2023-10-22
  • 录用日期:  2023-10-22
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回