留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四代光源储存环磁铁支撑设计及仿真优化

黄晴晴 杨振 罗涛 齐志军 苗学策

黄晴晴, 杨振, 罗涛, 等. 四代光源储存环磁铁支撑设计及仿真优化[J]. 强激光与粒子束, 2024, 36: 014001. doi: 10.11884/HPLPB202436.230269
引用本文: 黄晴晴, 杨振, 罗涛, 等. 四代光源储存环磁铁支撑设计及仿真优化[J]. 强激光与粒子束, 2024, 36: 014001. doi: 10.11884/HPLPB202436.230269
Huang Qingqing, Yang Zhen, Luo Tao, et al. Design, simulation and optimization of magnet supports in 4th generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2024, 36: 014001. doi: 10.11884/HPLPB202436.230269
Citation: Huang Qingqing, Yang Zhen, Luo Tao, et al. Design, simulation and optimization of magnet supports in 4th generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2024, 36: 014001. doi: 10.11884/HPLPB202436.230269

四代光源储存环磁铁支撑设计及仿真优化

doi: 10.11884/HPLPB202436.230269
基金项目: 国家自然科学基金项目(12175319)
详细信息
    作者简介:

    黄晴晴,huangqq@mail.iasf.ac.cn

  • 中图分类号: TL503

Design, simulation and optimization of magnet supports in 4th generation synchrotron light sources

  • 摘要: 储存环机械支撑的静力变形、调节精度决定各物理元件的定位精度,其动态响应特性间接影响着束流的稳定性,机械支撑是各物理元件的安装基础,保证磁铁、真空室、束测元件正确的安装、运行,发挥出相应的物理性能。主要从支撑的静力变形和固有频率两个方面对机械支撑进行优化设计。以深圳产业光源(SILF)共架支撑为例,利用SolidWorks和Ansys软件对储存环磁铁机械支撑进行设计、拓扑优化。详细阐述了储存环机械支撑设计、优化的过程,并将最终优化完成的支撑模型与磁铁模型进行装配,在尽量接近真实工况的基础上对整体支撑进行仿真计算,以确保支撑整体能够达到设计指标。
  • 图  1  7BA单元示机械支撑示意图

    Figure  1.  Schematic diagram of the 7BA element with girder

    图  2  支撑横梁的初步模型

    Figure  2.  The initial model of the girder

    图  3  横梁初始模型静力变形及一阶固有频率

    Figure  3.  Initial static deformation and the first-order frequency of the girder

    图  4  支撑横梁在各种组合下的静力变形量和一阶固有频率变化趋势

    Figure  4.  The deformation trend and the first-order frequency change trend of the girder

    图  5  Case15 支撑横梁静力变形和一阶频率

    Figure  5.  Static deformation and the first-order frequency of the girder

    图  6  不同D时支撑横梁的变形趋势和一阶模态值变化趋势

    Figure  6.  The trend of deformation and first-order frequency of the girder with different D values

    图  7  优化后横梁模拟结果

    Figure  7.  Simulated results of the girder

    图  8  横梁底板拓扑优化

    Figure  8.  Topology optimization of the girder

    图  9  横梁底板拓扑后仿真

    Figure  9.  Simulation after girder topology optimization

    图  10  加强筋拓扑

    Figure  10.  Topology optimization of reinforcements

    图  11  布加强筋后横梁的仿真

    Figure  11.  Simulation of the girder after reinforcement

    图  12  支撑整体静力变形与振动模态

    Figure  12.  Total deformation and modal

    表  1  部分光源支撑形式及准直的要求

    Table  1.   The type of girder and collimation requirements

    ring lattice girder adjustment the first-order frequency/Hz alignment accuracy
    between magnets/μm
    alignment accuracy
    between girder/μm
    ESRF-EBS 7BA common girder wedge 49(actual measurement) 50 50
    APS-U 7BA common girder wedge 36.3(actual measurement) 30 100
    Sirius 5BA common girder wedge 168(actual measurement) 40 80
    Diamond 6BA common girder cam 16.3(actual measurement) 50 100
    SLS-II 7BA common girder cam 50 100
    MAXIV 7BA common girder screw 39(actual measurement) 30 100
    HEPS 7BA common girder wedge 54(design parameter) 30 50
    下载: 导出CSV

    表  2  SILF储存环的主要参数

    Table  2.   Main parameters of the SILF storage ring

    beam energy/GeVcircumstance/mnumber of cellsnatural emittance/(pm·rad)transverse tunesmomentum compaction factordamping time/ms
    3.0696288968.26/24.226.6×10−534.97/43/74/25.01
    下载: 导出CSV

    表  3  横梁高度与截面角组合

    Table  3.   Combination of girder height and cross-section angle

    caseH/mmα/(°)caseH/mmα/(°)caseH/mmα/(°)caseH/mmα/(°)
    130065125007023350803455085
    235065135507024400803560085
    340065146007025450803630090
    445065153007526500803735090
    550065163507527550803840090
    655065174007528600803945090
    760065184507529300854050090
    830070195007530350854155090
    935070205507531400854260090
    104007021600753245085
    114507022300803350085
    下载: 导出CSV

    表  4  横梁最大静力变形量和一阶固有模态值

    Table  4.   Static deformation and the first-order frequency of the girder

    case the first-order frequency/Hz total deformation/mm case the first-order frequency/Hz total deformation/mm
    1 311.3 0.01443 22 315.3 0.01358
    2 309.3 0.01465 23 250.1 0.01377
    3 288.1 0.01485 24 198.9 0.01397
    4 260.1 0.01504 25 163.6 0.01417
    5 241.9 0.01521 26 138.2 0.01436
    6 230.0 0.01537 27 118.9 0.01453
    7 222.8 0.01551 28 104.1 0.01470
    8 313.9 0.01415 29 311.6 0.01328
    9 298.1 0.01436 30 231.9 0.01347
    10 250.4 0.01456 31 181.1 0.01367
    11 217.3 0.01476 32 146.2 0.01386
    12 193.9 0.01494 33 121.3 0.01405
    13 177.4 0.0151 34 102.6 0.01422
    14 165.6 0.01526 35 88.2 0.01439
    15 315.4 0.01387 36 296.2 0.01297
    16 272.3 0.01407 37 216.5 0.01316
    17 221.2 0.01427 38 166.5 0.01335
    18 186.2 0.01447 39 132.5 0.01354
    19 161.0 0.01465 40 108.3 0.01372
    20 142.3 0.01483 41 90.5 0.01389
    21 127.8 0.01499 42 76.8 0.01406
    下载: 导出CSV

    表  5  不同D值对应的横梁形变量和整体一阶模态值

    Table  5.   Deformation and the first-order frequency of the girder with different D values

    case D/mm deformation/mm the first-order frequency/Hz
    1 1080 0.010332647 71.37528032
    2 1100 0.009657498 71.54180391
    3 1120 0.009025472 71.69795512
    4 1140 0.008412724 71.84591134
    5 1160 0.007834575 71.98321915
    6 1180 0.007714708 72.11422153
    7 1200 0.007899744 72.24277478
    8 1220 0.008091512 72.36269286
    9 1240 0.008284279 72.47581847
    10 1260 0.008479983 72.58074762
    11 1280 0.00867867 72.67432685
    12 1300 0.008881759 72.75808202
    13 1320 0.009089703 72.82974036
    14 1340 0.009303582 72.88817963
    15 1360 0.009517383 72.93432918
    16 1380 0.009765245 72.96061067
    17 1400 0.010172279 72.93668228
    下载: 导出CSV
  • [1] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [2] 张令翊, 庄杰佳, 赵夔, 等. 第四代光源[J]. 强激光与粒子束, 2001, 13(1):51-55

    Zhang Lingyi, Zhuang Jiejia, Zhao Kui, et al. Fourth-generation light source[J]. High Power Laser and Particle Beams, 2001, 13(1): 51-55
    [3] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4] 殷立新. 光源加速器机械工程设计与实施[R]. 上海: 上海光源, 2008

    Yin Lixin. Mechanical engineering design and implementation of SSR[R]. 2008
    [5] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(Pt 6): 1611-1618.
    [6] Cianciosi F, Brochard T, Marion P, et al. The girder system for the new ESRF storage ring[C]//Proceedings of MEDSI 2016. 2016: 147-151.
    [7] Martensson N, Eriksson M. The saga of MAX IV, the first multi-bend achromat synchrotron light source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 97-104.
    [8] 王梓豪. HEPS-TF磁铁支架稳定性研究[D]. 北京: 中国科学院大学, 2019: 16-18

    Wang Zihao. Study on the stability of HEPS-TF magnet girder[D]. Beijing: University of Chinese Academy of Sciences, 2019: 16-18
    [9] 何兴, 申雨, 马俊达, 等. 超高层建筑的巨型异形钢柱柱底灌浆施工技术[J]. 建筑施工, 2017, 39(1):40-41 doi: 10.14144/j.cnki.jzsg.2017.01.014

    He Xing, Shen Yu, Ma Junda, et al. Construction technology of column bottom grouting for huge special-shaped steel column of super tall building[J]. Building Construction, 2017, 39(1): 40-41 doi: 10.14144/j.cnki.jzsg.2017.01.014
    [10] 杜开福. 用高强无收缩灌浆料替代型钢柱底二次砼浇灌施工应用[J]. 建筑工程技术与设计, 2017(19):1755-1756

    Du Kaifu. Construction of two times concrete pouring with high-strength non-shrinkage grouting instead of steel column bottom[J]. Architecture Engineering Technology and Design, 2017(19): 1755-1756
    [11] 李春华, 王梓豪, 周宁闯, 等. 先进光源磁铁支撑基座稳定性的实验研究[J]. 强激光与粒子束, 2021, 33:034003 doi: 10.11884/HPLPB202133.200201

    Li Chunhua, Wang Zihao, Zhou Ningchuang, et al. Experimental study on magnet support plinths of advanced light source[J]. High Power Laser and Particle Beams, 2021, 33: 034003 doi: 10.11884/HPLPB202133.200201
    [12] 苗玉刚, 赵峰, 何斌. 基于SolidWorks Simulation的工装压板有限元分析及优化设计[J]. 煤矿机械, 2015, 36(11):192-194

    Miao Yugang, Zhao Feng, He Bin. Finite element analysis and optimization design of tooling plate based on SolidWorks simulation[J]. Coal Mine Machinery, 2015, 36(11): 192-194
    [13] DS SolidWorks公司, 陈超祥, 胡其登. SolidWorks® Simulation高级教程[M]. 杭州新迪数字工程系统有限公司, 译. 5版. 北京: 机械工业出版社, 2018: 160-174

    DS SolidWorks, Chen Chaoxiang, Hu Qideng. SolidWorks professional[M]. Hangzhou Xindi Digital Engineering System Co. , Ltd, trans. 5th ed. Beijing: China Machine Press, 2018: 160-174
    [14] 张海艇, 何晓业, 王巍, 等. 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析[J]. 强激光与粒子束, 2020, 32:084003 doi: 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析

    Zhang Haiting, He Xiaoye, Wang Wei, et al. Design and simulation analysis of mechanical system of reference network for alignment based on Hefei Advanced Lightsource Facility[J]. High Power Laser and Particle Beams, 2020, 32: 084003 doi: 基于合肥先进光源的准直参考网络机械系统设计及其仿真分析
    [15] Jankovics D, Gohari H, Tayefeh M, et al. Developing topology optimization with additive manufacturing constraints in ANSYS®[J]. IFAC-PapersOnLine, 2018, 51(11): 1359-1364. doi: 10.1016/j.ifacol.2018.08.340
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  165
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2023-12-12
  • 录用日期:  2023-12-12
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回