留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针-水结构纳秒脉冲气液放电降解四环素

陈鹏举 周子凯 王森 方志

陈鹏举, 周子凯, 王森, 等. 针-水结构纳秒脉冲气液放电降解四环素[J]. 强激光与粒子束, 2024, 36: 035001. doi: 10.11884/HPLPB202436.230270
引用本文: 陈鹏举, 周子凯, 王森, 等. 针-水结构纳秒脉冲气液放电降解四环素[J]. 强激光与粒子束, 2024, 36: 035001. doi: 10.11884/HPLPB202436.230270
Chen Pengju, Zhou Zikai, Wang Sen, et al. Optimization of tetracycline degradation by nanosecond pulsed gas-liquid discharge with needle-water configuration[J]. High Power Laser and Particle Beams, 2024, 36: 035001. doi: 10.11884/HPLPB202436.230270
Citation: Chen Pengju, Zhou Zikai, Wang Sen, et al. Optimization of tetracycline degradation by nanosecond pulsed gas-liquid discharge with needle-water configuration[J]. High Power Laser and Particle Beams, 2024, 36: 035001. doi: 10.11884/HPLPB202436.230270

针-水结构纳秒脉冲气液放电降解四环素

doi: 10.11884/HPLPB202436.230270
基金项目: 国家自然科学基金项目(52277151、51907088)
详细信息
    作者简介:

    陈鹏举,ntupengju@163.com

    通讯作者:

    王 森,wang_sen@njtech.edu.cn

  • 中图分类号: O539

Optimization of tetracycline degradation by nanosecond pulsed gas-liquid discharge with needle-water configuration

  • 摘要: 过度使用抗生素导致的水污染,对自然环境和人类健康造成了重大威胁。低温等离子体作为一种绿色环保的高级氧化技术,被认为是一种最具前景的抗生素降解方法之一,然而在降解效率和能量效率方面还有待进一步提高。利用纳秒脉冲放电激励针-水结构气液放电,获得了一种能产生高活性等离子体的瞬态火花模式放电,并应用于水中四环素降解,研究了脉冲电压、频率、初始浓度、初始pH值等参数对四环素降解的影响,结果表明初始浓度50 mg/L,脉冲电压9 kV、频率2 kHz,初始pH值为中性的条件下四环素的降解率最高,处理时间10 min时降解率达到了91.6%,能量效率和每阶电能分别为0.165 g·kW−1·h−1和0.78 kW·h·m−3。自由基淬灭实验表明羟基自由基 (·OH) 在四环素降解过程中起主要作用,而H2O2和O3的作用稍弱。细胞毒性实验也表明气液放电处理10 min后的溶液毒性显著下降。
  • 图  1  实验系统示意图

    Figure  1.  Schematic of the experimental system

    图  2  脉冲电压对四环素降解率的影响

    Figure  2.  Effect of pulse voltage on the degradation rate of tetracycline

    图  3  频率对四环素降解率的影响

    Figure  3.  Effect of frequency on the degradation rate of tetracycline

    图  4  初始浓度对四环素降解率的影响

    Figure  4.  Effect of initial concentration on the degradation rate of tetracycline

    图  5  pH值对四环素降解率的影响

    Figure  5.  Effect of pH on the degradation rate of tetracycline

    图  6  每阶电能和能量效率随处理时间的变化

    Figure  6.  Variation of electrical energy per order and energy efficiency with processing time

    图  7  脉冲气液放电发射光谱图

    Figure  7.  Emission spectra of pulsed gas-liquid discharge

    图  8  去离子水与四环素溶液中长寿命物种的浓度

    Figure  8.  Concentration of long-lived species in deionized water and tetracycline solution

    图  9  不同活性物种的作用效率

    Figure  9.  Efficiency of action of different active species

    图  10  不同处理时间下的四环素溶液与去离子水中的细胞存活率

    Figure  10.  Cell viability in tetracycline solution and deionized water at different treatment times

  • [1] Dai Yingjie, Liu Mei, Li Jingjing, et al. A review on pollution situation and treatment methods of tetracycline in groundwater[J]. Separation Science and Technology, 2020, 55(5): 1005-1021. doi: 10.1080/01496395.2019.1577445
    [2] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358

    Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [3] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9

    Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [4] 孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究——意义、挑战与新进展[J]. 高电压技术, 2014, 40(10):2956-2965

    Kong Gangyu, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965
    [5] Miruka A C, Zhang Ai, Wang Qiancheng, et al. Degradation of glucocorticoids in water by a synergistic system of peroxymonosulfate, microbubble and dielectric barrier discharges[J]. Journal of Water Process Engineering, 2021, 42: 102175. doi: 10.1016/j.jwpe.2021.102175
    [6] 武海霞, 陈卫刚, 方志, 等. 介质阻挡放电优化激活过硫酸盐处理四环素废水[J]. 高电压技术, 2019, 45(5):1387-1395

    Wu Haixia, Chen Weigang, Fang Zhi, et al. Optimized activation of persulfate by dielectric barrier discharge for the treatment of tetracycline wastewater[J]. High Voltage Engineering, 2019, 45(5): 1387-1395
    [7] Li Wenshao, Zhou Renwu, Zhou Rusen, et al. Insights into amoxicillin degradation in water by non-thermal plasmas[J]. Chemosphere, 2022, 291: 132757. doi: 10.1016/j.chemosphere.2021.132757
    [8] Wei Ying, Lu Guanglu, Xie Dongrun, et al. Degradation of enrofloxacin in aqueous by DBD plasma and UV: degradation performance, mechanism and toxicity assessment[J]. Chemical Engineering Journal, 2022, 431: 133360. doi: 10.1016/j.cej.2021.133360
    [9] Sar A B, Shabani E G, Haghighi M, et al. Synergistic catalytic degradation of ciprofloxacin using magnetic carbon nanomaterial/NiFe2O4 promoted cold atmospheric pressure plasma jet: Influence of charcoal, multi walled carbon nanotubes and walnut shell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104131. doi: 10.1016/j.jtice.2021.10.031
    [10] 谢瑞, 陈超, 李武华, 等. 气液相等离子体放电水处理反应器及苯酚降解分析[J]. 高电压技术, 2010, 36(11):2791-2796

    Xie Rui, Chen Chao, Li Wuhuan, et al. Analysis on gas-liquid hybrid plasma discharge reactor for wastewater treatment and phenol degradation[J]. High Voltage Engineering, 2010, 36(11): 2791-2796
    [11] Liu Xinghao, Cheng Cheng, Xu Zimu, et al. Degradation of tetracycline in water by gas–liquid plasma in conjunction with rGO-TiO2 nanocomposite[J]. Plasma Science and Technology, 2021, 23: 115503. doi: 10.1088/2058-6272/ac1323
    [12] Chandana L, Ray D, Subrahmanyam C, et al. Physicochemical process of non-thermal plasma at gas-liquid interface and synergistic effect of plasma with catalyst[J]. Current Applied Physics, 2022, 36: 16-26. doi: 10.1016/j.cap.2022.01.006
    [13] Zhou Xiongfeng, Xiang Hongfu, Yang Minghao, et al. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency[J]. Journal of Physics D:Applied Physics, 2023, 56(45): 455202. doi: 10.1088/1361-6463/acec81
    [14] 张波, 周若瑜, 汪立峰, 等. 脉冲参数对大气压He中一维射流阵列放电特性的影响[J]. 电工技术学报, 2018, 33(21):5109-5118

    Zhang Bo, Zhou Ruoyu, Wang Lifeng, et al. Influence of pulse parameters discharge characteristics of one-dimensional plasma jet array in heat atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5109-5118
    [15] 满晨曦, 黄邦斗, 章程, 等. 不同脉冲参数下等离子体活化水活性氮特性[J]. 高电压技术, 2022, 48(6):2326-2335

    Man Chenxi, Huang Bangdou, Zhang Cheng, et al. Reactive nitrogen species characteristic of plasma-activated water under different pulsed parameters[J]. High Voltage Engineering, 2022, 48(6): 2326-2335
    [16] Xiang Liangrui, Xie Zhehao, Guo He, et al. Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: Mechanism and toxicity assessment[J]. Chemosphere, 2021, 283: 131156. doi: 10.1016/j.chemosphere.2021.131156
    [17] Man Chenxi, Zhang Cheng, Fang Haiqin, et al. Nanosecond-pulsed microbubble plasma reactor for plasma-activated water generation and bacterial inactivation[J]. Plasma Processes and Polymers, 2022, 19: 2200004. doi: 10.1002/ppap.202200004
    [18] Zhang Tianqi, Zhou Renwu, Wang Peiyu, et al. Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation[J]. Chemical Engineering Journal, 2021, 421: 127730. doi: 10.1016/j.cej.2020.127730
    [19] 孙明, 郝夏桐, 鲁晓辉, 等. 气液两相脉冲放电反应器的设计及其对酸性橙Ⅱ的降解效果[J]. 高电压技术, 2015, 41(2):498-503

    Sun Ming, Hao Xiatong, Lu Xiaohui, et al. A reactor design of gas-liquid two-phase pulse discharge and its performance in degrading acid orange Ⅱ[J]. High Voltage Engineering, 2015, 41(2): 498-503
    [20] Wang Chao, Qu Guangzhou, Wang Tiecheng, et al. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles[J]. Chemical Engineering Journal, 2018, 346: 159-170. doi: 10.1016/j.cej.2018.03.149
    [21] Mouele E S M, Myo T Z M, Kyaw H H, et al. Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/C-N-TiO2 supported nanocatalyst[J]. Journal of Hazardous Materials Advances, 2022, 5: 100051. doi: 10.1016/j.hazadv.2022.100051
    [22] 孙明, 金宏力, 杨颜颜, 等. 脉冲放电等离子体协同二氧化钛降解偶氮类染料废水[J]. 高电压技术, 2015, 41(9):2862-2867

    Sun Ming, Jin Hongli, Yang Yanyan, et al. Degradation of azo dye wastewater using pulsed discharge plasma with TiO2[J]. High Voltage Engineering, 2015, 41(9): 2862-2867
    [23] Wu Haixia, Fan Jiawei, Liu Feng, et al. Degradation of tetracycline in aqueous solution by persulphate assisted gas–liquid dielectric barrier discharge[J]. Water and Environment Journal, 2021, 35(3): 902-912. doi: 10.1111/wej.12678
    [24] Li Zhen, Wang Yawen, Guo He, et al. Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: performance, mechanism and degradation route[J]. Separation and Purification Technology, 2021, 277: 119415. doi: 10.1016/j.seppur.2021.119415
    [25] Li Hu, Li Tengfei, He Sitong, et al. Efficient degradation of antibiotics by non-thermal discharge plasma: highlight the impacts of molecular structures and degradation pathways[J]. Chemical Engineering Journal, 2020, 395: 125091. doi: 10.1016/j.cej.2020.125091
    [26] 王芝, 韩若愚, 李显东, 等. 水中针-板结构小能量脉冲火花放电特性[J]. 强激光与粒子束, 2022, 34:095006 doi: 10.11884/HPLPB202234.220022

    Wang Zhi, Han Ruoyu, Li Xiandong, et al. Low-energy pulsed spark discharge characteristics of pin-plate structure in water[J]. High Power Laser and Particle Beams, 2022, 34: 095006 doi: 10.11884/HPLPB202234.220022
    [27] Gong Shi, Sun Yabing, Zheng Ke, et al. Degradation of levofloxacin in aqueous solution by non-thermal plasma combined with Ag3PO4/activated carbon fibers: Mechanism and degradation pathways[J]. Separation and Purification Technology, 2020, 250: 117264. doi: 10.1016/j.seppur.2020.117264
    [28] 刘亚韪, 周子凯, 王森, 等. 大气压空气针-水结构脉冲气-液放电特性研究[J]. 强激光与粒子束, 2021, 33:065008 doi: 10.11884/HPLPB202133.210020

    Liu Yawei, Zhou Zikai, Wang Sen, et al. Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode[J]. High Power Laser and Particle Beams, 2021, 33: 065008 doi: 10.11884/HPLPB202133.210020
    [29] Zheng Ke, Sun Yabing, Gong Shi, et al. Degradation of sulfamethoxazole in aqueous solution by dielectric barrier discharge plasma combined with Bi2WO6–rMoS2 nanocomposite: mechanism and degradation pathway[J]. Chemosphere, 2019, 222: 872-883. doi: 10.1016/j.chemosphere.2019.02.004
    [30] Zhou Renwu, Zhou Rusen, Alam D, et al. Plasmacatalytic bubbles using CeO2 for organic pollutant degradation[J]. Chemical Engineering Journal, 2021, 403: 126413. doi: 10.1016/j.cej.2020.126413
    [31] Hao Chunjing, Yan Zeyao, Liu Kefu, et al. Degradation of pharmaceutical contaminant tetracycline in aqueous solution by coaxial-type DBD plasma reactor[J]. IEEE Transactions on Plasma Science, 2020, 48(2): 471-481. doi: 10.1109/TPS.2020.2964612
    [32] Brisset J L, Hnatiuc E. Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions[J]. Plasma Chemistry and Plasma Processing, 2012, 32(4): 655-674. doi: 10.1007/s11090-012-9384-x
  • 加载中
图(10)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  27
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2024-01-24
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-01-31
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回