留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种小尺寸轫致辐射转换靶设计

荆晓兵 石金水

荆晓兵, 石金水. 一种小尺寸轫致辐射转换靶设计[J]. 强激光与粒子束, 2024, 36: 034003. doi: 10.11884/HPLPB202436.230271
引用本文: 荆晓兵, 石金水. 一种小尺寸轫致辐射转换靶设计[J]. 强激光与粒子束, 2024, 36: 034003. doi: 10.11884/HPLPB202436.230271
Jing Xiaobing, Shi Jinshui. Small sized bremsstrahlung conversion target[J]. High Power Laser and Particle Beams, 2024, 36: 034003. doi: 10.11884/HPLPB202436.230271
Citation: Jing Xiaobing, Shi Jinshui. Small sized bremsstrahlung conversion target[J]. High Power Laser and Particle Beams, 2024, 36: 034003. doi: 10.11884/HPLPB202436.230271

一种小尺寸轫致辐射转换靶设计

doi: 10.11884/HPLPB202436.230271
详细信息
    作者简介:

    荆晓兵,jxb64@sina.com

  • 中图分类号: TL53

Small sized bremsstrahlung conversion target

  • 摘要: 以减小直线感应加速器X射线光源横向尺寸为目标,开展轫致辐射转换靶的设计。对聚焦打靶过程中电子束运动轨迹进行分析,指出同一个电子束轨迹分布,既可以描述为电子束在某纵向位置处具有一定的横向展宽,也可以描述为电子束保持较小横向尺寸时的轴向分布展宽,由此提出在束腰附近放置多个小靶片实现聚焦电子束有效阻挡的小尺寸多层靶概念设计。采用EGS4程序对X射线产额进行计算,发现靶厚度在一定范围内改变时X射线产额变化较小,基于这一规律完成了小尺寸多层靶的结构设计。进一步考察了一个设计应用实例,当聚焦电子束最小包络直径3 mm、会聚角100 mrad时,对比大尺寸靶,采用小尺寸多层靶可以获得等效直径减小约50%、产额减小约10%的X射线光源。该设计方法有望在相同的电子束品质和聚焦条件下,获得横向尺寸小于电子束最小束包络直径的X射线光源,具有一定的应用价值。
  • 图  1  束流发射度引起的电子轨迹扩散

    Figure  1.  Electron trajectory diffusion caused by beam emittance

    图  2  电子束均方根散角增加值随靶厚变化

    Figure  2.  Increase in RMS scatter angle of electronbeam varies with target thickness

    图  3  小尺寸轫致辐射转换靶概念示意图

    Figure  3.  Conceptual schematic diagram of small size bremsstrahlung conversion target

    图  4  光源尺寸引起的成像模糊

    Figure  4.  Image blurring caused by light source size

    表  1  不同钽靶厚度的归一化X射线产额(入射电子能量20 MeV)

    Table  1.   Normalized X-ray yield for different tantalum target thicknesses (incident electron energy 20 MeV)

    target material thickness/mmnormalized X-ray yield/%
    0.587
    0.691
    0.793
    1.097
    2.0100
    3.095
    3.593
    4.088
    下载: 导出CSV
  • [1] Peach K, Ekdahl C. Particle beam radiography[J]. Reviews of Accelerator Science and Technology, 2013, 6: 117-142. doi: 10.1142/S1793626813300065
    [2] 丁伯南, 邓建军, 王华岑, 等. “神龙一号”直线感应电子加速器[J]. 高能物理与核物理, 2005, 29(6):604-610

    Ding Bonan, Deng Jianjun, Wang Huacen, et al. Dragon-I linear induction electron accelerator[J]. High Energy Physics and Nuclear Physics, 2005, 29(6): 604-610
    [3] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201 doi: 10.11884/HPLPB201628.010201

    Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱ accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201
    [4] Burns M J, Carlsten B E, Kwan T J T, et al. DAHRT accelerators update and plans for initial operation[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999: 617-621.
    [5] Scarpetti R D, Nath S, Barraza J, et al. Status of the DARHT 2nd axis accelerator at the Los Alamos National Laboratory[C]//Proceedings of the 2007 Particle Accelerator Conference. 2007: 831-835.
    [6] Nath S. DARHT II option for advanced radiography[R]. LA-UR-11-02623, 2011.
    [7] Ekdahl C. Characterizing flash-radiography source spots[J]. Journal of the Optical Society of America A, 2011, 28(12): 2501-2509. doi: 10.1364/JOSAA.28.002501
    [8] Takayama K, Briggs R J. Induction accelerators[M]. New York: Springer, 2011: 165-184.
    [9] Welch D R, Hughes T P. Effect of target-emitted ions on the focal spot of an intense electron beam[J]. Laser and Particle Beams, 1998, 16(2): 285-294. doi: 10.1017/S0263034600011617
    [10] Vermare C, Davis H A, Moir D C, et al. Ion emission from solid surfaces induced by intense electron beam impact[J]. Physics of Plasmas, 2003, 10(1): 277-284. doi: 10.1063/1.1527629
    [11] McCuistian B T, Moir D, Rose E, et al. Temporal spot size evolution of the DARHT first axis radiographic source[C]//Proceedings of the 2008 European Part Accelerator Conference. 2008: 1206-1208.
    [12] Humphries Jr S. Charged particle beams[M]. New York: Wiley, 1990.
    [13] Chen Y J. Corkscrew modes in linear accelelators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 292(2): 455-464.
    [14] Groom D E, Klein S R. Passage of particles through matter[J]. The European Physical Journal C - Particles and Fields, 2000, 15(1/4): 163-173.
    [15] Tsai Y S. Pair production and bremsstrahlung of charged leptons[J]. Reviews of Modern Physics, 1974, 46(4): 815-852. doi: 10.1103/RevModPhys.46.815
    [16] 龙继东, 石金水, 禹海军, 等. 厚靶轫致辐射特性的数值模拟研究[J]. 高能物理与核物理, 2004, 28(11):1238-1243

    Long Jidong, Shi Jinshui, Yu Haijun, et al. Bremsstrahlung characteristics of thick-target applied in high energy X-ray facility[J]. High Energy Physics and Nuclear Physics, 2004, 28(11): 1238-1243
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  52
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2024-01-02
  • 录用日期:  2023-12-30
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回