留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反向传播神经网络PID的高功率微波炉温度控制

王威 李少甫 吴昊 蒋成 唐颖颖

王威, 李少甫, 吴昊, 等. 基于反向传播神经网络PID的高功率微波炉温度控制[J]. 强激光与粒子束, 2024, 36: 013010. doi: 10.11884/HPLPB202436.230280
引用本文: 王威, 李少甫, 吴昊, 等. 基于反向传播神经网络PID的高功率微波炉温度控制[J]. 强激光与粒子束, 2024, 36: 013010. doi: 10.11884/HPLPB202436.230280
Wang Wei, Li Shaofu, Wu Hao, et al. Research on temperature control of high power microwave oven based on back propagation neural network PID[J]. High Power Laser and Particle Beams, 2024, 36: 013010. doi: 10.11884/HPLPB202436.230280
Citation: Wang Wei, Li Shaofu, Wu Hao, et al. Research on temperature control of high power microwave oven based on back propagation neural network PID[J]. High Power Laser and Particle Beams, 2024, 36: 013010. doi: 10.11884/HPLPB202436.230280

基于反向传播神经网络PID的高功率微波炉温度控制

doi: 10.11884/HPLPB202436.230280
基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金项目(U1830201)
详细信息
    作者简介:

    王威,1309318818@qq.com

  • 中图分类号: TP273

Research on temperature control of high power microwave oven based on back propagation neural network PID

  • 摘要: 针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水为加热对象进行仿真对比与实验验证。首先,利用现有输入输出实验数据,建立工业微波炉温度控制模型;其次,运用MATLAB/SIMULINK搭建高功率工业微波炉温度控制系统并进行仿真对比实验;最后,实验验证BPNNPID控制方法在加热5 kg自来水时工业微波炉的温度控制性能,实验结果表明,较常规PID、模糊PID控制,该方法在微波加热过程中对媒质温度控制超调更小且未发生明显温度振荡,有效改善了高功率工业微波炉工作时的系统温度稳定性,有助于提高产品质量和安全性能。
  • 图  1  基于BPNNPID的微波加热温度控制器结构

    Figure  1.  Structure of microwave heating temperature controller based on back propagation neural network PID (BPNNPID)

    图  2  BP神经网络结构图

    Figure  2.  BP neural network structure diagram

    图  3  微波加热过程输入输出数据

    Figure  3.  Input and output data of microwave heating process

    图  4  辨识模型拟合曲线

    Figure  4.  Identification model fitting curve

    图  5  微波加热温度控制系统仿真模型

    Figure  5.  Simulation model of microwave heating temperature control system

    图  6  高功率微波炉实物及结构图

    Figure  6.  Device and structural diagram of high power microwave oven

    图  7  微波加热温度仿真对比

    Figure  7.  Comparison of microwave heating temperature simulation

    图  8  微波加热温度控制系统框图

    Figure  8.  Block diagram of microwave heating temperature control system

    图  9  微波加热温度实验对比

    Figure  9.  Comparison of microwave heating temperature experiments

    表  1  各控制方法控制性能对比

    Table  1.   Comparison of control performance of various control methods

    simulated rise
    time/s
    measured rise
    time/s
    simulated peak
    time/s
    measured peak
    time/s
    simulated
    overshoot/%
    measured
    overshoot/%
    simulated maximum
    steady-state error/%
    measured maximum
    steady-state error/%
    PID 120 230 200 290 22.36 16 11.18 9
    fuzzy PID 210 220 270 360 7.28 11.5 4.7 8
    BPNNPID 320 260 330 380 0.7 6 0.7 4
    下载: 导出CSV
  • [1] Ano T, Tsubaki S, Fujii S, et al. Designing local microwave heating of metal nanoparticles/metal oxide substrate composites[J]. The Journal of Physical Chemistry C, 2021, 125(43): 23720-23728. doi: 10.1021/acs.jpcc.1c06650
    [2] Li Hangren, Liu Saiyu, Xu Wence, et al. The effect of microwave on the crystallization behavior of CMAS system glass-ceramics[J]. Materials, 2020, 13: 4555. doi: 10.3390/ma13204555
    [3] Chen Jin, Gao Lei, Guo Shenghui, et al. Evaluation of the structure and valence state of titanium oxide in titania slag under microwave heating[J]. Materials Letters, 2022, 310: 131475. doi: 10.1016/j.matlet.2021.131475
    [4] Lou Yuanzheng, Guan Li, Wang Yanke, et al. Synthesis of (MgCoNiCuZn)O high-entropy oxide composites by microwave heating[J]. Journal of Materials Science:Materials in Electronics, 2023, 34: 132. doi: 10.1007/s10854-022-09596-6
    [5] Yang Biao, Xiao Qingyun, Cheng Cheng, et al. Research on temperature uniformity optimization of microwave heating Debye media based on MDADT[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23538.
    [6] Yin Shumeng. Effect of metal slots on the heating uniformity of multisource cavity microwave[J]. Frontiers in Energy Research, 2023, 10: 1007566. doi: 10.3389/fenrg.2022.1007566
    [7] Gupta N, Midha V, Balakotaiah V, et al. Bifurcation analysis of thermal runaway in microwave heating of ceramics[J]. Journal of the Electrochemical Society, 1999, 146(12): 4659-4665. doi: 10.1149/1.1392690
    [8] 黄卡玛, 卢波. 微波加热化学反应中热失控条件的定量研究[J]. 中国科学 E辑:技术科学, 2009, 39(2):266-271

    Huang Kama, Lu Bo. Quantitative study of thermal runaway conditions in microwave heated chemical reactions[J]. Scientia Sinica (Technologica), 2009, 39(2): 266-271
    [9] 周明长. 多馈口微波加热数值仿真及温度控制研究[D]. 绵阳: 西南科技大学, 2020

    Zhou Mingchang. Study on numerical simulation of microwave heating and temperature control[D]. Mianyang: Southwest University of Science and Technology, 2020
    [10] Liu Tong, Liang Shan, Xiong Qingyu, et al. Data-based online optimal temperature tracking control in continuous microwave heating system by adaptive dynamic programming[J]. Neural Processing Letters, 2020, 51(1): 167-191. doi: 10.1007/s11063-019-10081-1
    [11] 杨彪, 成宬, 李鑫培, 等. 一种基于预测模型的微波加热过程温度控制策略[J]. 昆明理工大学学报(自然科学版), 2020, 45(5):1-8

    Yang Biao, Cheng Cheng, Li Xinpei, et al. A temperature control strategy for microwave heating process based on prediction model[J]. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(5): 1-8
    [12] 袁晓峰, 彭金辉, 陈颀, 等. 一种改进的工业微波炉加热控制PID技术[J]. 工业加热, 2015, 44(2):65-68

    Yuan Xiaofeng, Peng Jinhui, Chen Qi, et al. A improved PID technology used in industrial microwave heating furnace control[J]. Industrial Heating, 2015, 44(2): 65-68
    [13] 刘长军, 申东雨. 微波加热陶瓷中热失控现象的分析与控制[J]. 中国科学 E辑: 技术科学, 2008, 38(7): 1097-1105

    Liu Changjun, Shen Dongyu. Analysis and control of the thermal runaway of ceramic slab under microwave heating[J]. Science in China Series E: Technological Sciences, 2008, 51(12): 2233-2241
    [14] 周明长, 李少甫. 基于数值仿真的多馈微波加热温度控制系统[J]. 微波学报, 2019, 35(5):92-96

    Zhou Mingchang, Li Shaofu. Multi-feed microwave heating temperature control system based on numerical simulation[J]. Journal of Microwaves, 2019, 35(5): 92-96
    [15] Yuan Yupeng, Liang Shan, Zhong Jiaqi, et al. Black box system identification dedicated to a microwave heating process[C]//Proceedings of the 27th Chinese Control and Decision Conference. 2015: 4116-4120.
    [16] 张泽旭. 神经网络控制与MATLAB仿真[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011

    Zhang Zexu. Neural networks control and MATLAB simulation[M]. Harbin: Harbin Institute of Technology Press, 2011
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  202
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-11-22
  • 录用日期:  2023-12-01
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回