留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and verification of 3D temperature model for high power microwave heating

Wu Hao Li Shaofu Wang Wei Jiang Cheng Tang Yingying

吴昊, 李少甫, 王威, 等. 高功率微波加热三维温度模型仿真与验证[J]. 强激光与粒子束, 2024, 36: 013014. doi: 10.11884/HPLPB202436.230281
引用本文: 吴昊, 李少甫, 王威, 等. 高功率微波加热三维温度模型仿真与验证[J]. 强激光与粒子束, 2024, 36: 013014. doi: 10.11884/HPLPB202436.230281
Wu Hao, Li Shaofu, Wang Wei, et al. Simulation and verification of 3D temperature model for high power microwave heating[J]. High Power Laser and Particle Beams, 2024, 36: 013014. doi: 10.11884/HPLPB202436.230281
Citation: Wu Hao, Li Shaofu, Wang Wei, et al. Simulation and verification of 3D temperature model for high power microwave heating[J]. High Power Laser and Particle Beams, 2024, 36: 013014. doi: 10.11884/HPLPB202436.230281

高功率微波加热三维温度模型仿真与验证

doi: 10.11884/HPLPB202436.230281
详细信息
  • 中图分类号: TK121

Simulation and verification of 3D temperature model for high power microwave heating

Funds: National Natural Science Foundation of China (U1830201)
More Information
  • 摘要:

    微波加热不均匀性一直以来都是从事微波加热控制方向研究人员心目中的热点问题。根据微波加热装置的物理结构建立了炉内各层表面的温度静态差分模型结合实验以求得微波加热的实际功率。再基于传热学的有限差分法建立三维空间中的温度分布模型,利用MATLAB以及COMSOL仿真对比验证了模型的有效性。假定微波均匀加热求得被加热介质的平衡温度与不均匀加热时的温度进行比对以找出微波加热过程中介质的部分温升平衡点,最后互相比对找出最优点为控制对象进行专家PID(proportion-integral-derivative)微波加热。实验结果表明,该方法能较为精确地测量出被加热介质任何时刻的平衡温度,使得微波加热在工业生产上有着更加广泛的应用。

  • Figure  1.  Microwave resonator diagram

    Figure  2.  Schematic diagram of heat loss

    Figure  3.  Temperature error analysis chart of 5.4 kg water

    Figure  4.  Partition diagram of different materials

    Figure  5.  1/2 full scale model

    Figure  6.  Temperature distribution at 465 s

    Figure  7.  COMSOL simulation of electric field distribution in water medium

    Figure  8.  Temperature comparison in r and z directions

    Figure  9.  Temperature distribution of microwave uniform heating and uneven heating in rz plane

    Figure  10.  Block diagram of microwave heating control system

    Figure  11.  Temperature change trend at each point

    Figure  12.  Temperature change trend of each point under expert PID control

    Table  1.   Material parameter values of each layer

    material $ \rho /\left( {{\rm{kg}}\cdot {{\rm{m}}^{-3}}} \right) $ $ c/\left({\rm{J}}\cdot{\rm{kg}}^{-1}\cdot {{\text{℃}}}^{-1}\right) $ $ \lambda /\left({\rm{W}}\cdot{\rm{m}}^{-1}\cdot {{\text{℃}}}^{-1}\right) $
    W 1000 4200 0.59
    G 2600 850 2
    A 1.18 1005 0.028
    B 7930 1260 16.2
    下载: 导出CSV

    Table  2.   Empirical rule table of incremental expert PID control

    No. if then
    1 u>1.00 all five magnetrons run
    2 1.00≥u>0.75 four magnetrons run randomly
    3 0.75≥u>0.50 three magnetrons run randomly
    4 0.50≥u>0.25 two magnetrons run randomly
    5 0.25≥u>0.00 one magnetron run randomly
    6 u≤0.00 all magnetrons stop running
    下载: 导出CSV
  • [1] Li Hangren, Liu Saiyu, Xu Wence, et al. The effect of microwave on the crystallization behavior of CMAS system glass-ceramics[J]. Materials, 2020, 13: 4555. doi: 10.3390/ma13204555
    [2] Zhong Jiaqi, Liang Shan. A data-driven based spatiotemporal model reduction for microwave heating process with the mixed boundary conditions[J]. Processes, 2021, 9: 827. doi: 10.3390/pr9050827
    [3] Chan T V C T, Reader H C. Computational design of a multiplex magnetron cavity[C]//Proceedings of IEEE AFRICON’96. 1996: 523-527.
    [4] Jeni K, Yapa M, Rattanadecho P. Design and analysis of the commercialized drier processing using a combined unsymmetrical double-feed microwave and vacuum system (case study: tea leaves)[J]. Chemical Engineering and Processing:Process Intensification, 2010, 49 (4) : 389-395. doi: 10.1016/j.cep.2010.03.003
    [5] Wang Shunmin, Hu Zhichao, Han Yongbin, et al. Effects of magnetron arrangement and power combination of microwave on drying uniformity of carrot[J]. Drying Technology, 2013, 31 (11) : 1206-1211. doi: 10.1080/07373937.2013.783590
    [6] Zhou Mingchang. Study on numerical simulation of microwave heating and temperature control[D]. Mianyang: Southwest University of Science and Technology, 2020.
    [7] Dai Chengjun. The design and development of the microwave activation equipment on the industry[D]. Mianyang: Southwest University of Science and Technology, 2012.
    [8] Yang Biao, Wang Shili, Guo Linjia, et al. Numerical calculation of temperature uniformity in microwave heating based on moving mesh[J]. Control and Decision, 2019, 34 (1) : 113-120.
    [9] Zhong Jiaqi, Liang Shan, Xiong Qingyu. H guaranteed cost temperature tracking control for microwave heating Debye media process[J]. Acta Automatica Sinica, 2018, 44 (8) : 1518-1527.
    [10] Zheng Hongfei. Fundamentals of thermodynamics and heat transfer[M]. Beijing: Science Press, 2016.
    [11] Liu Yanfeng, Liang Xiujun, Gao Zhengyang, et al. Heat transfer[M]. Beijing: China Electric Power Press, 2021.
    [12] Zhou Mingchang, Li Shaofu. Multi-feed microwave heating temperature control system based on numerical simulation[J]. Journal of Microwaves, 2019, 35 (5) : 92-96.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  152
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-10-09
  • 录用日期:  2023-10-09
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回