留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大连先进光源束流垃圾桶屏蔽设计及热工分析

鄂得俊 黄礼明 刘昌奇 陶凯

鄂得俊, 黄礼明, 刘昌奇, 等. 大连先进光源束流垃圾桶屏蔽设计及热工分析[J]. 强激光与粒子束, 2024, 36: 014003. doi: 10.11884/HPLPB202436.230286
引用本文: 鄂得俊, 黄礼明, 刘昌奇, 等. 大连先进光源束流垃圾桶屏蔽设计及热工分析[J]. 强激光与粒子束, 2024, 36: 014003. doi: 10.11884/HPLPB202436.230286
E Dejun, Huang Liming, Liu Changqi, et al. Dalian Advanced Light Source beam dump radiation shielding design and thermal analysis[J]. High Power Laser and Particle Beams, 2024, 36: 014003. doi: 10.11884/HPLPB202436.230286
Citation: E Dejun, Huang Liming, Liu Changqi, et al. Dalian Advanced Light Source beam dump radiation shielding design and thermal analysis[J]. High Power Laser and Particle Beams, 2024, 36: 014003. doi: 10.11884/HPLPB202436.230286

大连先进光源束流垃圾桶屏蔽设计及热工分析

doi: 10.11884/HPLPB202436.230286
详细信息
    作者简介:

    鄂得俊,edejun@mai.iasf.ac.cn

    通讯作者:

    陶 凯,taokai@mail.iasf.ac.cn

  • 中图分类号: TL99

Dalian Advanced Light Source beam dump radiation shielding design and thermal analysis

  • 摘要: 基于蒙特卡罗模拟软件FLUKA和有限元软件COMSOL对大连先进光源(DALS)束流垃圾桶的设计进行了初步研究。采用FLUKA软件进行了束流垃圾桶和主体建筑的建模,理论公式和模拟计算保证径向和轴向束流垃圾桶沉积能量在99%以上,计算中引入减方差技巧,降低计算结果的统计误差,相应的计算结果的误差在5%以内。同时计算给出侧墙和顶板位置的辐射剂量率的大小,侧墙两边的剂量率大小分别为1.84 μSv/h和1.15 μSv/h,顶板位置处的剂量率大小约为1.14 μSv/h,保证了工作人员的安全与健康。利用COMSOL软件计算束流入射情况下束流垃圾桶的温度分布和热应力的大小,得到稳态情况下束流垃圾桶的最高温度为55.1 ℃,最大热应力大小为54.5 MPa,小于材料的熔点和屈服强度,保证束流垃圾桶在装置运行过程中的稳定性。
  • 图  1  大连先进光源束流垃圾桶分布

    Figure  1.  Beam dump distribution of Dalian Advanced Light Source

    图  2  大连先进光源束流垃圾桶物理建模

    Figure  2.  Beam dump model of Dalian Advanced Light Source

    图  3  大连先进光源束流垃圾桶附近的剂量率二维分布

    Figure  3.  Two-dimension dose rate distribution of Dalian Advanced Light Source

    图  4  侧墙外和顶板处的剂量率大小

    Figure  4.  Magnitude of dose rate outside the side walls and the ceiling

    图  5  电子束稳态运行时束流垃圾桶的热源分布

    Figure  5.  Heat source distribution during the electron beam steady state

    图  6  稳态情况下束流垃圾桶的温度和热应力的分布

    Figure  6.  Beam dump temperature and thermal stresses in the steady state

    表  1  石墨、铝和铜的物理性质和辐照特性的对比

    Table  1.   Physical properties and irradiation properties of graphite, aluminum and copper

    material Z A density Ec/MeV X0/cm RM/cm R99%/cm L99%/cm Tmelt/℃ Top/℃ E/GPa α(10−6 K−1) σ0.2/MPa σu/MPa
    C 6 12.01 1.71 75.9 25.10 7.0 35.0 383 3800 500~600 13 7(6~8) 60
    Al 13 26.98 2.70 40 8.89 4.7 23.5 159 660 ≤250 70 26 200~400 80~120
    Cu 29 63.54 8.96 18.8 1.44 1.6 8.0 30 1083 ≤200 120 17 150~400 60~100
    下载: 导出CSV
  • [1] Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator[J]. Nature Photonics, 2020, 14(6): 391-397. doi: 10.1038/s41566-020-0607-z
    [2] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6(8): 540-544. doi: 10.1038/nphoton.2012.141
    [3] Huang Zhirong, Lindau I. SACLA hard-X-ray compact FEL[J]. Nature Photonics, 2012, 6(8): 505-506. doi: 10.1038/nphoton.2012.184
    [4] 徐玉海, 王光宏, 李哲夫, 等. 上海硬X射线自由电子激光装置调试用束流收集桶的设计[J]. 辐射防护, 2020, 40(6):510-515

    Xu Yuhai, Wang Guanghong, Li Zhefu, et al. Design of beam dump for the commissioning at SHINE facility[J]. Radiation Protection, 2020, 40(6): 510-515
    [5] 吴青彪, 王庆斌. 用FLUKA程序模拟设计中国散裂中子源的束流垃圾桶结构[J]. 清华大学学报(自然科学版), 2007, 47(s1):996-1000

    Wu Qingbiao, Wang Qingbin. Using FLUKA code to simulate and design the beam dumps' structure of CSNS[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(s1): 996-1000
    [6] Jung N S, Lee H S, Oh J H, et al. Radiation shielding design of the PAL-XFEL[J]. Journal of the Korean Physical Society, 2015, 66(3): 425-431. doi: 10.3938/jkps.66.425
    [7] Jung N S, Kim M H, Bae O, et al. Assessment of the radiation dose level of the PAL-XFEL hard X-ray beamlines under accident conditions[J]. Journal of the Korean Physical Society, 2018, 73(8): 1061-1067. doi: 10.3938/jkps.73.1061
    [8] Liu Xianghong, Bazarov I, Dunham B M, et al. A high average power beam dump for an electron accelerator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 709: 37-43.
    [9] García M, Ogando F, López D, et al. IFMIF/EVEDA beam dump shielding: optimized design of the front part[C]//Proceedings of the 2nd International Particle Accelerator Conference. 2011.
    [10] Shi T, Sun D, Jovanovic I, et al. Optimization of the electron beam dump for a GeV-class laser electron accelerator[J]. Applied Radiation and Isotopes, 2021, 176: 109853. doi: 10.1016/j.apradiso.2021.109853
    [11] Iglesias D, Arranz F, Arroyo J M, et al. The IFMIF-EVEDA accelerator beam dump design[J]. Journal of Nuclear Materials, 2011, 417(1/3): 1275-1279.
    [12] Kamiya J, Saha P K, Yamamoto K, et al. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 869: 84-94.
    [13] Kumar V, Harvey M, Wendel M, et al. Thermal loading analysis of the ring injection dump for the Spallation Neutron Source facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1006: 165380.
    [14] 石澔玙, 王庆斌, 马忠剑, 等. CEPC直线加速器束流垃圾桶初步设计[J]. 核技术, 2019, 42:100204

    Shi Haoyu, Wang Qingbin, Ma Zhongjian, et al. Preliminary design of beam dump for CEPC-linac[J]. Nuclear Techniques, 2019, 42: 100204
    [15] Maslov M, Schmitz M, Sychev V. Layout considerations on the 25GeV/ 300kW beam dump of the XFEL project[R]. Germany: DESY, 2006.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  228
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 修回日期:  2023-12-22
  • 录用日期:  2023-12-22
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回