留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Q值单间隙同轴谐振腔的物理设计与实验研究

吕彦奎 阳福香 党方超 葛行军 贺军涛

吕彦奎, 阳福香, 党方超, 等. 高Q值单间隙同轴谐振腔的物理设计与实验研究[J]. 强激光与粒子束, 2024, 36: 033012. doi: 10.11884/HPLPB202436.230294
引用本文: 吕彦奎, 阳福香, 党方超, 等. 高Q值单间隙同轴谐振腔的物理设计与实验研究[J]. 强激光与粒子束, 2024, 36: 033012. doi: 10.11884/HPLPB202436.230294
Lü Yankui, Yang Fuxiang, Dang Fangchao, et al. Design and measurement of high Q-factor coaxial resonant cavity[J]. High Power Laser and Particle Beams, 2024, 36: 033012. doi: 10.11884/HPLPB202436.230294
Citation: Lü Yankui, Yang Fuxiang, Dang Fangchao, et al. Design and measurement of high Q-factor coaxial resonant cavity[J]. High Power Laser and Particle Beams, 2024, 36: 033012. doi: 10.11884/HPLPB202436.230294

Q值单间隙同轴谐振腔的物理设计与实验研究

doi: 10.11884/HPLPB202436.230294
详细信息
    作者简介:

    吕彦奎,4638810121@qq.com

    通讯作者:

    阳福香,1205505877@qq.com

  • 中图分类号: TN62

Design and measurement of high Q-factor coaxial resonant cavity

  • 摘要: 随着高功率微波源向高功率、高频率和长脉冲方向不断发展,同轴相对论速调管放大器(RKA)成为近年来研究热点之一,然而其发展一直受限于自激振荡等问题存在,为此,设计一种高Q值单间隙同轴谐振腔,以抑制同轴RKA中TEM模式泄露引起的自激振荡。通过对单间隙同轴谐振腔TM01模式与TEM模式转化进行理论分析与仿真模拟,发现同轴谐振腔上下槽深差值与轴向错位值对其Q值变化影响很大,当上下槽深差值与轴向错位值分别为0.3 mm和0 mm时,同轴谐振腔的Q值为极大值(18 764),意味着此时谐振腔中两种模式转化最小,多组谐振腔级联后自激振荡风险大大降低。将三组级联的高Q值单间隙同轴谐振腔应用于紧凑型同轴RKA,粒子模拟和实验结果表明,器件的输出微波功率稳定,频谱纯净,无自激振荡等问题存在。
  • 图  1  单间隙谐振腔的结构示意

    Figure  1.  Schematics of a single resonant cavity

    图  2  单间隙谐振腔二维示意及分区

    Figure  2.  Two-dimensional schematic of a single resonant cavity

    图  3  同轴谐振腔中TEM和TM01模式电场和磁场分布

    Figure  3.  Radial electric and magnetic field field distributions of TEM and TM01 modes in the coaxial resonant cavity

    图  4  同轴谐振腔I区和II区的电场和磁场分布

    Figure  4.  Electric and magnetic field distributions in I and II zones of a coaxial resonant cavity

    图  5  同轴谐振腔的错位结构示意

    Figure  5.  Schematic of a designed coaxial resonator

    图  6  同轴谐振腔Q值随内外槽深差值Δr变化

    Figure  6.  Simulated Q-factor values of a single-gap coaxial resonant cavity versus Δr

    图  7  同轴谐振腔Q值随内外错位值Δl变化

    Figure  7.  Simulated frequency and Q-factor values of a single-gap coaxial resonant cavity versus Δl

    图  8  紧凑型同轴RKA的整管模型

    Figure  8.  Schematic of a compact coaxial RKA

    图  9  同轴相对论RKA中不同Q值对应的基波调制电流深度

    Figure  9.  First harmonic current ratios in the coaxial RKA with different Q factors

    图  10  典型的微波波形

    Figure  10.  Typical results of HPM output

  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaves[M]. 3rd ed. Boca Raton: CRC Press, 2016.
    [2] Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Trans Plasma Sci, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [3] Ju Jinchuan, Zhang Jun, Shu Ting, et al. An improved X-band triaxial klystron amplifier for gigawatt long-pulse high-power microwave generation[J]. IEEE Electron Device Lett, 2017, 38(2): 270-272. doi: 10.1109/LED.2016.2646679
    [4] Dang Fangchao, Zhang Xiaoping, Zhang Jun, et al. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation[J]. J Appl Phys, 2017, 121: 123305. doi: 10.1063/1.4979309
    [5] Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band long pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2019, 66(1): 722-728. doi: 10.1109/TED.2018.2879193
    [6] Zhang Wei, Ju Jinchuan, Zhang Jun, et al. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities[J]. Phys Plasmas, 2017, 24: 123118. doi: 10.1063/1.5011057
    [7] Ju Jinchuan, Chen Yinghao, Zhou Yunxiao, et al. A coaxial high power output cavity operating in hybrid TM01-TM02 modes for repetitive operation[J]. IEEE Electron Device Lett, 2021, 42(10): 1551-1554. doi: 10.1109/LED.2021.3108536
    [8] 戚祖敏. X波段三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2015

    Qi Zumin. Investigation of an X-band triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2015
    [9] 吴洋, 李正红, 谢鸿全, 等. 衰减材料对高增益相对论速调管自激振荡的抑制[J]. 强激光与粒子束, 2014, 26:063043 doi: 10.3788/HPLPB20142606.63043

    Wu Yang, Li Zhenghong, Xie Hongquan, et al. Suppression of self-oscillation in high gain relativistic klystron amplifier by RF lossy material[J]. High Power Laser and Particle Beams, 2014, 26: 063043 doi: 10.3788/HPLPB20142606.63043
    [10] Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [11] 张威. X波段高功率高效率相对论三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2019

    Zhang Wei. Investigation of an X-band high-power and high-efficiency relativistic triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2019
    [12] 张克潜, 李德杰. 微波与光电子学中的电磁理论[M]. 北京: 电子工业出版社, 2001

    Zhang Keqian, Li Dejie. Electromagnetic theory for microwaves and optoelectronics[M]. Beijing: Publishing House of Electronics Industry, 2001.
    [13] 黄宏嘉. 微波原理[M]. 北京: 科学出版社, 1964

    Huang Hongjia. Microwave principles[M]. Beijing: Science Press, 1964
    [14] CST Microwave Studio Suite 2016, Darmstadt, Germany, 2016.
    [15] Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: an efficient code for electromagnetic PIC modeling and simulation[J]. IEEE Trans Plasma Sci, 2009, 37(10): 2002-2011. doi: 10.1109/TPS.2009.2026477
  • 加载中
图(10)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  41
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-01-06
  • 录用日期:  2024-01-06
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回