留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LC串联谐振的高压恒流充电电源设计

江进波 徐林 罗正 杨文 唐铭 姚延东 陈锐

江进波, 徐林, 罗正, 等. 基于LC串联谐振的高压恒流充电电源设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230295
引用本文: 江进波, 徐林, 罗正, 等. 基于LC串联谐振的高压恒流充电电源设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230295
Jiang Jinbo, Xu Lin, Luo Zheng, et al. Design of high voltage constant current charging power supply based on LC series resonance[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230295
Citation: Jiang Jinbo, Xu Lin, Luo Zheng, et al. Design of high voltage constant current charging power supply based on LC series resonance[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230295

基于LC串联谐振的高压恒流充电电源设计

doi: 10.11884/HPLPB202436.230295
基金项目: 国家自然科学基金项目(51707105);强脉冲辐射环境模拟与效应全国实验室专项(SKLIPR2008)
详细信息
    作者简介:

    江进波,jinbojiang@163.com

  • 中图分类号: TN78

Design of high voltage constant current charging power supply based on LC series resonance

  • 摘要: LC串联谐振式高压恒流充电电源能够实现电容器的高效快速充电,且具有较好的抗负载短路能力,在高重频脉冲功率系统中具有广阔的应用前景。充电电源的效率是决定系统重频运行能力的重要因素,提高效率是目前高压电容器充电电源设计的首要目标。根据LC串联谐振电路的工作原理,分析可知电源工作模式、逆变桥的开关频率以及高频变压器的分布参数是影响LC串联谐振电源效率的主要因素。针对功率为10 kW、输出电压为40 kV的直流电源,计算主电路参数并利用Pspice建立了电路模型验证其准确性,采用软开关技术减小开关损耗,设计了分布参数较小的高频变压器进一步提高效率,并在此基础上完成了电源整体结构设计。最后测试了电源的充电特性,结果表明该电源可将0.1 µF电容器在37 ms内充电至39.5 kV,其充电效率为87.1%。
  • 图  1  LC串联谐振变换器拓扑结构

    Figure  1.  Schematic diagram of LC series resonant converter

    图  2  DCM工作模式波形图

    Figure  2.  Main waveform of DCM, 0<fsfr/2

    图  3  电源系统组成图

    Figure  3.  Power system composition diagram

    图  4  高频变压器等效模型

    Figure  4.  Equivalent model of high-frequency transformer

    图  5  LCC串并联谐振变换器拓扑结构

    Figure  5.  Topology diagram of LCC series parallel resonant converter

    图  6  高频高压变压器绕制过程

    Figure  6.  Winding process of high-frequency high-voltage transformer

    图  7  谐振电流仿真波形

    Figure  7.  Resonant current simulation waveforms

    图  8  充电电压波形

    Figure  8.  Charging voltage waveform

    图  9  谐振电流测试波形

    Figure  9.  Resonant current test waveforms

    图  10  0.1 µF电容充电电压波形

    Figure  10.  Charging voltage waveform of 0.1 µF capacitor

    表  1  目标参数

    Table  1.   Target parameters

    charging voltage U/kV charging power P0/kW charging current I/A resonant frequency fr/kHz switching frequency fs/kHz efficiency η/%
    40 10 0.25 40 10~20 80
    下载: 导出CSV

    表  2  设计输出参数

    Table  2.   Design output parameters

    parameter charging
    voltage/kV
    resonance
    frequency/kHz
    switching
    frequency/kHz
    linear and nonlinear charging
    turning point time/ms
    peak resonant
    current/A
    output value 40 40 16 18 56
    design value 40 40 10~20 19.9 59.73
    下载: 导出CSV
  • [1] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [2] 刘劲东, 何大勇, 杨兴旺, 等. 双谐振拓扑高压脉冲电容器充电电源[J]. 强激光与粒子束, 2019, 31:040021 doi: 10.11884/HPLPB201931.180314

    Liu Jingdong, He Dayong, Yang Xingwang, et al. High voltage pulse capacitor charging power supply based on double resonant topology[J]. High Power Laser and Particle Beams, 2019, 31: 040021 doi: 10.11884/HPLPB201931.180314
    [3] 甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30:065003 doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [4] Lippincott A C, Nelms R M. A capacitor-charging power supply using a series-resonant topology, constant on-time/variable frequency control, and zero-current switching[J]. IEEE Transactions on Industrial Electronics, 1991, 38(6): 438-447. doi: 10.1109/41.107099
    [5] Elwell R, Cherry J, Fagan S, et al. Current and voltage controlled capacitor charging schemes[J]. IEEE Transactions on Magnetics, 1995, 31(1): 38-42. doi: 10.1109/20.364732
    [6] 李伟, 刘庆想, 张政权. 恒功率输入恒流输出的电容器充电电源[J]. 强激光与粒子束, 2016, 28:075003 doi: 10.11884/HPLPB201628.075003

    Li Wei, Liu Qingxiang, Zhang Zhengquan. Capacitor charging power supply with constant power input and constant current output[J]. High Power Laser and Particle Beams, 2016, 28: 075003 doi: 10.11884/HPLPB201628.075003
    [7] 蔡政平, 李伟松. 太赫兹器件测试用高重复频率高压脉冲电源[J]. 强激光与粒子束, 2018, 30:023101 doi: 10.11884/HPLPB201830.170274

    Cai Zhengping, Li Weisong. Development of high frequency pulsed power supply for THz device test[J]. High Power Laser and Particle Beams, 2018, 30: 023101 doi: 10.11884/HPLPB201830.170274
    [8] 刘福才, 金书辉, 赵晓娟. LC串联谐振和LCC串并联谐振在高压脉冲电容充电电源中的应用比较[J]. 高电压技术, 2012, 38(12):3347-3356

    Liu Fucai, Jin Shuhui, Zhao Xiaojuan. Comparison of LC series resonant and LCC series-parallel resonant in high-voltage pulse capacitor charging power supply application[J]. High Voltage Engineering, 2012, 38(12): 3347-3356
    [9] 李网生. 脉冲调制器新型充电电源的研究[D]. 南京: 南京理工大学, 2005: 4-5

    Li Wangsheng. Research on new charging power supply for pulse modulator[D]. Nanjing: Nanjing University of Science and Technology, 2005: 4-5
    [10] 钟和清, 徐至新, 邹旭东, 等. 软开关高压开关电源研究[J]. 高电压技术, 2003, 29(8):7-9

    Zhong Heqing, Xu Zhixin, Zou Xudong, et al. Research on the high voltage soft switching power supply[J]. High Voltage Engineering, 2003, 29(8): 7-9
    [11] 杨实, 任书庆, 来定国, 等. 大功率高压恒流充电源研制[J]. 强激光与粒子束, 2015, 27:095006 doi: 10.11884/HPLPB201527.095006

    Yan Shi, Ren Shuqing, Lai Dingguo, et al. High power high voltage constant current capacitor charging power supply[J]. High Power Laser and Particle Beams, 2015, 27: 095006 doi: 10.11884/HPLPB201527.095006
    [12] Parate B, Kumar R S, Thakur K, et al. Design and modelling of SRC based capacitor charging power supply for high power klystron modulator using MULTISIM[C]//Proceedings of 2019 National Power Electronics Conference. 2019: 1-6.
    [13] 张纵横. 脉冲碎石谐振充电电源的研制[D]. 武汉: 华中科技大学, 2019: 6-9

    Zhang Zongheng. Development of pulse stone resonant charging power supply[D]. Wuhan: Huazhong University of Science and Technology, 2019: 6-9
    [14] 冯传均, 伍友成, 何泱, 等. 正负双极性重复频率充电电源研制[J]. 强激光与粒子束, 2023, 35:035001 doi: 10.11884/HPLPB202335.220301

    Feng Chuanjun, Wu Youcheng, He Yang, et al. Development of a bipolar repetitive high voltage power supply[J]. High Power Laser and Particle Beams, 2023, 35: 035001 doi: 10.11884/HPLPB202335.220301
    [15] Schrittwieser L, Leibl M, Kolar J W. 99% efficient isolated three-phase matrix-type DAB buck–boost PFC rectifier[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 138-157. doi: 10.1109/TPEL.2019.2914488
    [16] 谭亲跃, 林福昌, 王少荣, 等. 串联谐振式高压电容器充电电源的效率特性研究[J]. 高压电器, 2015, 51(4):78-83

    Tan Qinyue, Lin Fuchang, Wang Shaorong, et al. Study on efficiency of high voltage capacitor charging power supply with series resonant[J]. High Voltage Apparatus, 2015, 51(4): 78-83
    [17] 李名加, 常安碧, 康强. 具有大耦合系数的Tesla变压器理论分析[J]. 高电压技术, 2006, 32(5):51-53 doi: 10.3969/j.issn.1003-6520.2006.05.015

    Li Mingjia, Chang Anbi, Kang Qiang. Analysis of tesla transformer with high coupling coefficient[J]. High Voltage Engineering, 2006, 32(5): 51-53 doi: 10.3969/j.issn.1003-6520.2006.05.015
    [18] Kelley A W, Yadusky W F. Rectifier design for minimum line current harmonics and maximum power factor[C]//Proceedings of the Fourth Annual IEEE Applied Power Electronics Conference and Exposition. 1989: 13-22.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  29
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-01-12
  • 录用日期:  2024-01-13
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回