留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频纳秒脉冲调制器的分立磁耦合驱动器设计

陈磊 李国超 张戈 朱才会 邱剑 赵晖 刘克富

陈磊, 李国超, 张戈, 等. 高频纳秒脉冲调制器的分立磁耦合驱动器设计[J]. 强激光与粒子束, 2024, 36: 055005. doi: 10.11884/HPLPB202436.230306
引用本文: 陈磊, 李国超, 张戈, 等. 高频纳秒脉冲调制器的分立磁耦合驱动器设计[J]. 强激光与粒子束, 2024, 36: 055005. doi: 10.11884/HPLPB202436.230306
Chen Lei, Li Guochao, Zhang Ge, et al. Design of discrete magnetic coupling drivers for high-frequency nanosecond pulse modulator[J]. High Power Laser and Particle Beams, 2024, 36: 055005. doi: 10.11884/HPLPB202436.230306
Citation: Chen Lei, Li Guochao, Zhang Ge, et al. Design of discrete magnetic coupling drivers for high-frequency nanosecond pulse modulator[J]. High Power Laser and Particle Beams, 2024, 36: 055005. doi: 10.11884/HPLPB202436.230306

高频纳秒脉冲调制器的分立磁耦合驱动器设计

doi: 10.11884/HPLPB202436.230306
基金项目: 国家自然科学基金青年基金项目(51877406)
详细信息
    作者简介:

    陈 磊,21210720061@m.fudan.edu.cn

    通讯作者:

    邱 剑,jqiu@fudan.edu.cn

  • 中图分类号: TM832

Design of discrete magnetic coupling drivers for high-frequency nanosecond pulse modulator

  • 摘要: 随着高压纳秒固态脉冲发生器在生物、工业和环境等领域的应用日益广泛和深入,脉冲波形、电压幅值、脉冲持续时间、脉冲重复频率等参数已成为特定脉冲功率应用所需的基本可控变量。为了进一步减小电源的体积、降低成本,提出一款以正极性Marx为主电路、多个脉冲变压器为核心驱动器、具有纳秒级前沿高重复频率的高压纳秒脉冲调制器。提出的驱动器结构紧凑,无需提供多路隔离供电的驱动电源,可以在高重复频率下实现两个金属氧化物半导体场效应晶体管(MOSFETs)的栅极电压快速同步上升和下降,获得百纳秒以内、幅值可控的栅极驱动电压。不仅最大脉宽不受磁芯饱和的限制,而且负偏置电压使开关管可控关断,同时在一定程度上避免了电流流过MOSFET米勒电容而引起的寄生导通,提高了电路工作的可靠性。此外,研究了不同匝数和磁芯材料对驱动波形的影响。搭建了一台14级脉冲调制器样机,测试结果表明,基于该驱动器下的调制器输出电压和脉宽都连续可调,具有改变脉冲轮廓的能力,最大输出电压可达5.5 kV,脉宽调节范围为100 ns~50 ms,最小上升时间约18 ns,重复频率为100 kHz。
  • 图  1  N级全固态Marx拓扑

    Figure  1.  N-stage all solid-state Marx topology

    图  2  基于分立磁耦合驱动器的系统和电路结构

    Figure  2.  Structure of the discrete magnetic coupling driver

    图  3  驱动器的三种不同工作状况

    Figure  3.  Three different working states of the driver

    图  4  分立磁耦合驱动器实物图

    Figure  4.  Discrete magnetic coupling drivers

    图  5  脉冲调制器实验样机

    Figure  5.  Experimental prototype of pulse modulator

    图  6  正/负窄脉冲和驱动信号波形图

    Figure  6.  Voltage waveforms of positive/negative narrow pulse and the drive signal

    图  7  100 kHz高重复频率下放电开关和充电开关栅极电压波形图

    Figure  7.  Gate voltage waveform during operation at 100 kHz high repetitive figurency

    图  8  变压和变脉宽输出波形图

    Figure  8.  Output waveforms with different input voltage and pulse width

    图  9  100 kHz输出电压波形和50 ms长脉宽输出电压波形

    Figure  9.  Output voltage waveforms with f =100 kHz and 50 ms pulse width

    图  10  不同上升/下降沿的输出脉冲

    Figure  10.  Voltage waveforms with the different rise/fall time

  • [1] Rao Xian, Chen Xiaodong, Zhou Jun, et al. Design of a high voltage pulse generator with large width adjusting range for tumor treatment[J]. Electronics, 2020, 9: 1053. doi: 10.3390/electronics9061053
    [2] Rezanejad M, Sheikholeslami A, Adabi J. Modular switched capacitor voltage multiplier topology for pulsed power supply[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 635-643. doi: 10.1109/TDEI.2013.004067
    [3] Redondo L M, Silva J F. Flyback versus forward switching power supply topologies for unipolar pulsed-power applications[J]. IEEE Transactions on Plasma Science, 2009, 37(1): 171-178. doi: 10.1109/TPS.2008.2006056
    [4] 姜松, 邱力文, 饶俊峰, 等. 新型全固态高压多电平波形发生器的研制[J]. 强激光与粒子束, 2019, 31:115003 doi: 10.11884/HPLPB201931.190124

    Jiang Song, Qiu Liwen, Rao Junfeng, et al. Development of a new all-solid-state high voltage multilevel waveform generator[J]. High Power Laser and Particle Beams, 2019, 31: 115003 doi: 10.11884/HPLPB201931.190124
    [5] Pirc E, Miklavčič D, Uršič K, et al. High-frequency and high-voltage asymmetric bipolar pulse generator for electroporation based technologies and therapies[J]. Electronics, 2021, 10: 1203. doi: 10.3390/electronics10101203
    [6] Fan Rui, Wang Yaogong, Zhang Xiaoning, et al. Parameterized nanosecond pulse realization through parametrical modulation of timing sequence of switches in Marx circuit[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4096-4104. doi: 10.1109/TPS.2019.2923416
    [7] 邹林, 余厉阳, 段誉. 可编程的多波形脉冲低温等离子电源[J]. 真空科学与技术学报, 2018, 38(10):869-874

    Zou Lin, Yu Liyang, Duan Yu. Novel programmable pulsed power-supply with multi-waveform output for generation of low temperature plasma[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(10): 869-874
    [8] 王鹏, 赵政嘉, 刘雪山, 等. 电力电子设备中的电气绝缘问题[J]. 高电压技术, 2018, 44(7):2309-2322

    Wang Peng, Zhao Zhengjia, Liu Xueshan, et al. Electrical insulation problems in power electronics devices[J]. High Voltage Engineering, 2018, 44(7): 2309-2322
    [9] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787

    Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [10] 王冬冬, 邱剑, 刘克富. 基于半导体开关和磁开关的全固态脉冲电源[J]. 强激光与粒子束, 2010, 22(4):730-734 doi: 10.3788/HPLPB20102204.0730

    Wang Dongdong, Qiu Jian, Liu Kefu. All solid-state pulsed power generator with semiconductor and magnetic switches[J]. High Power Laser and Particle Beams, 2010, 22(4): 730-734 doi: 10.3788/HPLPB20102204.0730
    [11] Kamada A, Sugai T, Tokuchi A, et al. Step-down DC-DC converter for solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2021, 49(10): 3149-3153. doi: 10.1109/TPS.2021.3114320
    [12] Liu Ying, Fan Rui, Zhang Xiaoning, et al. Bipolar high voltage pulse generator without H-bridge based on cascade of positive and negative Marx generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 476-483. doi: 10.1109/TDEI.2018.007861
    [13] Zeng Weirong, Yao Chenguo, Dong Shoulong, et al. Self-triggering high-frequency nanosecond pulse generator[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8002-8012. doi: 10.1109/TPEL.2020.2967183
    [14] Kandratsyeu A, Sabaleuski U, Redondo L, et al. Four channel 6.5 kV, 65 A, 100 ns-100 µs generator with advanced control of pulse and burst protocols for biomedical and biotechnological applications[J]. Applied Sciences, 2021, 11: 11782. doi: 10.3390/app112411782
    [15] 饶俊峰, 宋子鸣, 王永刚, 等. 基于磁隔离驱动的亚微秒高压脉冲电源[J]. 强激光与粒子束, 2021, 33:115002 doi: 10.11884/HPLPB202133.210332

    Rao Junfeng, Song Ziming, Wang Yonggang, et al. Sub-microsecond high voltage pulse power supply based on magnetic isolated driving[J]. High Power Laser and Particle Beams, 2021, 33: 115002 doi: 10.11884/HPLPB202133.210332
    [16] Zeng Weirong, Yu Liang, Dong Shoulong, et al. A novel high-frequency bipolar pulsed power generator for biological applications[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 12861-12870. doi: 10.1109/TPEL.2020.2994333
    [17] 米彦, 万晖, 卞昌浩, 等. 基于模块化多电平换流器的模块化前后沿可调高压纳秒脉冲发生器的研制[J]. 电工技术学报, 2020, 35(6):1279-1289

    Mi Yan, Wan Hui, Bian Changhao, et al. Design of modular high-voltage nanosecond pulse generator with adjustable rise/fall time based on modular multilevel converter topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1279-1289
    [18] Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-state Marx generator[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [19] 周琦. 一种适用于桥式电路的碳化硅MOSFET驱动器[J]. 电力电子技术, 2018, 52(11):43-46

    Zhou Qi. A novel SiC MOSFET gate driver circuit for bridge circuit[J]. Power Electronics, 2018, 52(11): 43-46
    [20] 张鹏宁, 向雪岩, 李伟, 等. 面向电力电子变压器的高频变压器技术[J]. 高电压技术, 2022, 48(12):4996-5011

    Zhang Pengning, Xiang Xueyan, Li Wei, et al. High frequency transformer technology for power electronic transformer[J]. High Voltage Engineering, 2022, 48(12): 4996-5011
  • 加载中
图(10)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2024-01-15
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-03-12
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回