留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si-GDP结构和力学性能的反应分子动力学模拟

黄保生 杨武 易勇 毕鹏

黄保生, 杨武, 易勇, 等. Si-GDP结构和力学性能的反应分子动力学模拟[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230316
引用本文: 黄保生, 杨武, 易勇, 等. Si-GDP结构和力学性能的反应分子动力学模拟[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230316
Huang Baosheng, Yang Wu, Yi Yong, et al. Reactive force field molecular dynamics simulation of structure and mechanical property of Si-doped glow discharge polymer[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230316
Citation: Huang Baosheng, Yang Wu, Yi Yong, et al. Reactive force field molecular dynamics simulation of structure and mechanical property of Si-doped glow discharge polymer[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230316

Si-GDP结构和力学性能的反应分子动力学模拟

doi: 10.11884/HPLPB202436.230316
基金项目: 四川省科技计划项目(2023NSFSC1990)
详细信息
    作者简介:

    黄保生,frankhuang0720@163.com

    通讯作者:

    毕 鹏,bipeng010@swust.edu.cn

  • 中图分类号: O484

Reactive force field molecular dynamics simulation of structure and mechanical property of Si-doped glow discharge polymer

  • 摘要: 构建了硅掺杂辉光放电聚合物(Si-GDP)模型,采用反应力场分子动力学模拟(ReaxFF MD)探讨了硅含量、碳氢比及密度对其杂化碳键合与力学性能的影响。研究结果表明:随着硅含量增加,聚合物中sp3C含量增加,趋向于形成一个大分子,同时小分子种类和数目减少,促进了碳硅原子成键并抑制端基CH3生成,进而提高材料力学性能;随着氢含量的增加,sp3C和端基CH3比例增加,生成的端基CH3降低了分子间交联程度,进而降低了材料力学性能,而分子基团数目变化不明显;随着密度的提升,聚合物中sp2C比例提升明显,sp3C比例有少量提升,分子基团数目变化不大,密度主要通过提升sp2C比例提升材料力学性能。研究结果为评估和理解硅掺杂辉光放电聚合物的结构和力学性能提供了新的视角和方法。
  • 图  1  模拟所得的Si-GDP模型

    Figure  1.  Simulated structures of Si-GDP

    图  2  Si-GDP分子种类分析结果

    Figure  2.  Molecular species analysis results of different Si-GDP

    图  3  Si-GDP模型最长分子链示意图(右侧透明部分为最长分子链,深色部分为其他分子碎片)

    Figure  3.  Diagram of the longest molecular chains of Si-GDP

    图  4  Si-GDP中杂化碳键合分析

    Figure  4.  Analysis results of hybrid carbon ratio in each Si-GDP

    图  5  Si-GDP中sp3CH3分析

    Figure  5.  sp3CH3 bonds ratio of each Si-GDP

    图  6  Si-GDP杨氏模量模拟结果

    Figure  6.  Simulation results of Young's modulus for each Si-GDP

    表  1  Si-GDP模型参数

    Table  1.   Model parameters of Si-GDP

    model name number of atoms Si atom fraction/% RH:(Si+C) density/(g·cm−3)
    all C H Si
    Si-1.2 1488 645 825 18 1.2 1.19 ± 0.03 0.95
    Si-3.8 1418 597 767 54 3.8 1.19 ± 0.03 0.95
    Si-6.3 1420 567 763 90 6.3 1.19 ± 0.03 0.98
    Si-8.6 1461 548 787 126 8.6 1.19 ± 0.03 1.03
    Si-10.6 1524 525 837 162 10.6 1.19 ± 0.03 1.07
    H-0.95 1419 613 692 114 8.6 ± 0.4 0.95 1.08
    H-1.00 1396 580 698 118 8.6 ± 0.4 1.00 1.04
    H-1.07 1402 554 725 123 8.6 ± 0.4 1.07 1.02
    H-1.23 1471 534 810 127 8.6 ± 0.4 1.23 1.01
    H-1.29 1436 496 808 132 8.6 ± 0.4 1.29 0.97
    D-0.79 1108 463 573 72 6.3 ± 0.1 1.10 ± 0.02 0.79
    D-0.91 1306 533 693 80 6.3 ± 0.1 1.10 ± 0.02 0.91
    D-0.99 1401 580 733 88 6.3 ± 0.1 1.10 ± 0.02 0.99
    D-1.09 1538 638 804 96 6.3 ± 0.1 1.10 ± 0.02 1.09
    D-1.19 1693 703 886 104 6.3 ± 0.1 1.10 ± 0.02 1.19
    下载: 导出CSV
  • [1] Robertson J. Diamond-like amorphous carbon[J]. Materials Science and Engineering:R:Reports, 2002, 37(4/6): 129-281.
    [2] 阳志林, 何智兵, 宋之敏, 等. 反式二丁烯和氢气流量比对辉光放电聚合物热稳定性能的影响[J]. 强激光与粒子束, 2010, 22(5):1044-1048 doi: 10.3788/HPLPB20102205.1044

    Yang Zhilin, He Zhibing, Song Zhimin, et al. Influence of T2B/H2 flow ratio on thermal stability of glow discharge polymer prepared by low-pressure plasma chemical vapor deposition[J]. High Power Laser and Particle Beams, 2010, 22(5): 1044-1048 doi: 10.3788/HPLPB20102205.1044
    [3] 李蕊, 何智兵, 何小珊, 等. 射频功率对辉光放电H2/C4H8等离子状态的影响[J]. 物理学报, 2012, 61:215203 doi: 10.7498/aps.61.215203

    Li Rui, He Zhibing, He Xiaoshan, et al. Influence of radio-frequency power on the state of H2/C4H8 glowing discharge plasma[J]. Acta Physica Sinica, 2012, 61: 215203 doi: 10.7498/aps.61.215203
    [4] 李蕊, 何智兵, 杨向东, 等. 工作压强对射频辉光放电H2/C4H8等离子状态的影响[J]. 物理学报, 2013, 62:058104 doi: 10.7498/aps.62.058104

    Li Rui, He Zhibing, Yang Xiangdong, et al. Influence of working pressure on the state of H2/C4H8 glowing discharge plasma[J]. Acta Physica Sinica, 2013, 62: 058104 doi: 10.7498/aps.62.058104
    [5] Frolov V D, Zavedeev E V, Pimenov S M, et al. Nanocones on (a-C: H): Si composite films: thermal stability, growth dynamics and electrical properties[J]. Diamond and Related Materials, 2007, 16(4/7): 1218-1221.
    [6] Li Longqiu, Xu Ming, Song Wenping, et al. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method[J]. Applied Surface Science, 2013, 286: 287-297. doi: 10.1016/j.apsusc.2013.09.073
    [7] 张洪亮, 吴卫东, 何智兵, 等. Fe掺杂氢化非晶碳薄膜制备及其热稳定性能[J]. 强激光与粒子束, 2008, 20(4):621-624

    Zhang Hongliang, Wu Weidong, He Zhibing, et al. Preparation and thermal stability of Fe-doped hydrogenated amorphous carbon films[J]. High Power Laser and Particle Beams, 2008, 20(4): 621-624
    [8] Ernst K H, Oral B. On the chemistry at the Si, Ti-doped a-C: H/TiC interface[J]. Thin Solid Films, 2004, 446(1): 72-77. doi: 10.1016/S0040-6090(03)01324-5
    [9] Mangolini F, Hilbert J, McClimon J B, et al. Thermally induced structural evolution of silicon- and oxygen-containing hydrogenated amorphous carbon: a combined spectroscopic and molecular dynamics simulation investigation[J]. Langmuir, 2018, 34(9): 2989-2995. doi: 10.1021/acs.langmuir.7b04266
    [10] Erdemir A, Donnet C. Tribology of diamond-like carbon films: recent progress and future prospects[J]. Journal of Physics D:Applied Physics, 2006, 39(18): R311-R327. doi: 10.1088/0022-3727/39/18/R01
    [11] Ray S C, Bao C W, Tsai H M, et al. Electronic structure and bonding properties of Si-doped hydrogenated amorphous carbon films[J]. Applied Physics Letters, 2004, 85(18): 4022-4024. doi: 10.1063/1.1812594
    [12] Hoppe M L. Large glass shells from GDP shells[J]. Fusion Technology, 2000, 38(1): 42-45. doi: 10.13182/FST00-A36113
    [13] 张颖, 何智兵, 李萍, 等. 硅掺杂辉光放电聚合物薄膜的热稳定性研究[J]. 物理学报, 2011, 60:126501 doi: 10.7498/aps.60.126501

    Zhang Ying, He Zhibing, Li Ping, et al. Thermal stability of Si-doped glow discharge polymer films[J]. Acta Physica Sinica, 2011, 60: 126501 doi: 10.7498/aps.60.126501
    [14] 张颖, 何智兵, 闫建成, 等. 工作压强对硅掺杂辉光放电聚合物结构和性能的影响[J]. 物理学报, 2011, 60:066803 doi: 10.7498/aps.60.066803

    Zhang Ying, He Zhibing, Yan Jiancheng, et al. Influence of pressure on structure and properties of Si-doped glow discharge polymer film[J]. Acta Physica Sinica, 2011, 60: 066803 doi: 10.7498/aps.60.066803
    [15] Chouquet C, Gerbaud G, Bardet M, et al. Structural and mechanical properties of a-C: H and Si doped a-C: H thin films grown by LF-PECVD[J]. Surface and Coatings Technology, 2010, 204(9/10): 1339-1346.
    [16] 何智兵, 阳志林, 闫建成, 等. 辉光放电聚合物结构及力学性质研究[J]. 物理学报, 2011, 60:086803 doi: 10.7498/aps.60.086803

    He Zhibing, Yang Zhilin, Yan Jiancheng, et al. Structure and mechanical property of glow discharge polymer[J]. Acta physica Sinica, 2011, 60: 086803 doi: 10.7498/aps.60.086803
    [17] Bilek M M M, McKenzie D R, McCulloch D G, et al. Ab initio simulation of structure in amorphous hydrogenated carbon[J]. Physical Review B, 2000, 62(5): 3071-3077. doi: 10.1103/PhysRevB.62.3071
    [18] Hamel S, Benedict L X, Celliers P M, et al. Equation of state of CH1.36: first-principles molecular dynamics simulations and shock-and-release wave speed measurements[J]. Physical Review B, 2012, 86: 094113. doi: 10.1103/PhysRevB.86.094113
    [19] De Tomas C, Suarez-Martinez I, Marks N A. Graphitization of amorphous carbons: a comparative study of interatomic potentials[J]. Carbon, 2016, 109: 681-693. doi: 10.1016/j.carbon.2016.08.024
    [20] Hilbert J, Mangolini F, McClimon J B, et al. Si doping enhances the thermal stability of diamond-like carbon through reductions in carbon-carbon bond length disorder[J]. Carbon, 2018, 131: 72-78. doi: 10.1016/j.carbon.2018.01.081
    [21] Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. doi: 10.1021/jp709896w
    [22] van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. doi: 10.1021/jp004368u
    [23] Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. npj Computational Materials, 2016, 2: 15011. doi: 10.1038/npjcompumats.2015.11
    [24] Liu Qingkang, Ssong Wenping, Huang Qitao, et al. ReaxFF reactive molecular dynamics simulation of the oxidation of silicon-doped amorphous carbon film in heat-assisted magnetic recording[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2472-2479.
    [25] 唐钰杰, 郑默, 任春醒, 等. ReaxFF MD局部区域反应追踪与物理性质可视化分析[J]. 物理化学学报, 2021, 37:2003037

    Tang Yujie, Zheng Mo, Ren Chunxing, et al. Visualized reaction tracking and physical property analysis for a picked 3D area in a reactive molecular dynamics simulation system[J]. Acta Physico-Chimica Sinica, 2021, 37: 2003037
    [26] Thompson A P, Aktulga H M, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
    [27] Aktulga H M, Fogarty J C, Pandit S A, et al. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques[J]. Parallel Computing, 2012, 38(4/5): 245-259.
    [28] Newsome D A, Sengupta D, Foroutan H, et al. Oxidation of silicon carbide by O2 and H2O: a ReaxFF reactive molecular dynamics study, part I[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16111-16121. doi: 10.1021/jp306391p
    [29] 高巍, 朱嘉琦, 牛丽, 等. 非晶碳结构建模和电子结构的第一性原理研究[J]. 物理学报, 2008, 57(1):398-404 doi: 10.3321/j.issn:1000-3290.2008.01.062

    Gao Wei, Zhu Jiaqi, Niu Li, et al. et al. Ab initio structural simulation and electronic structure of amorphous carbon[J]. Acta Physica Sinica, 2008, 57(1): 398-404 doi: 10.3321/j.issn:1000-3290.2008.01.062
    [30] Martínez L, Andrade R, Birgin E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. doi: 10.1002/jcc.21224
    [31] Suter U W, Eichinger B E. Estimating elastic constants by averaging over simulated structures[J]. Polymer, 2002, 43(2): 575-582. doi: 10.1016/S1089-3156(01)00007-1
    [32] Ai Xing, Chen Guo, Zhang Ling, et al. The radial distribution of ions and electrons in RF inductively coupled H2/T2B plasmas[J]. Plasma Chemistry and Plasma Processing, 2018, 38(1): 281-292. doi: 10.1007/s11090-017-9858-y
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2024-03-07
  • 录用日期:  2024-03-07
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回