留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带双腔反射器的X波段低磁场过模相对论返波管振荡器

左靖凡 李士锋 吴洋 黄华 孙利民 宋法伦

左靖凡, 李士锋, 吴洋, 等. 带双腔反射器的X波段低磁场过模相对论返波管振荡器[J]. 强激光与粒子束, 2024, 36: 033010. doi: 10.11884/HPLPB202436.230319
引用本文: 左靖凡, 李士锋, 吴洋, 等. 带双腔反射器的X波段低磁场过模相对论返波管振荡器[J]. 强激光与粒子束, 2024, 36: 033010. doi: 10.11884/HPLPB202436.230319
Zuo Jingfan, Li Shifeng, Wu Yang, et al. Low magnetic field X-band over-mode relativistic backward wave oscillator with dual-cavity reflector[J]. High Power Laser and Particle Beams, 2024, 36: 033010. doi: 10.11884/HPLPB202436.230319
Citation: Zuo Jingfan, Li Shifeng, Wu Yang, et al. Low magnetic field X-band over-mode relativistic backward wave oscillator with dual-cavity reflector[J]. High Power Laser and Particle Beams, 2024, 36: 033010. doi: 10.11884/HPLPB202436.230319

带双腔反射器的X波段低磁场过模相对论返波管振荡器

doi: 10.11884/HPLPB202436.230319
基金项目: 高功率微波重点实验室基金项目(JCKYS2021212013)
详细信息
    作者简介:

    左靖凡,m15733085025@163.com

    通讯作者:

    宋法伦,songfalun@caep.cn

  • 中图分类号: TN121

Low magnetic field X-band over-mode relativistic backward wave oscillator with dual-cavity reflector

  • 摘要: 提出了一种X波段过模低磁场高效率相对论返波管振荡器(RBWO),其主要结构包括一个双谐振腔反射器、一个周期性慢波结构和一个插入式同轴内导体模式选择器。该RBWO采用了过模结构,较大的过模比带来了更高的功率容量。慢波结构分为空心与同轴两部分,插入同轴避免了高阶模式的竞争,使两段慢波结构分别工作在TM02和同轴TM01模式下。同时,插入同轴还起着模式转换的功能,将TM02转化为TM01,最终在输出波导中输出纯TM01模式。双谐振腔反射器使慢波结构在过模条件下与二极管区域能够实现良好隔离,同时为电子束提供足够的预调制,实现在低磁场下较高的微波转化效率。利用粒子模拟仿真对器件进行优化设计,在二极管电压850 kV、束流11.74 kA、引导磁场0.63 T的条件下,获得了3.5 GW的微波输出功率,微波中心频率为9.46 GHz,转换效率约为35%。
  • 图  1  慢波结构示意图

    Figure  1.  Schematic diagram of slow wave structure

    图  2  慢波结构色散曲线

    Figure  2.  Dispersion curve of slow wave structure

    图  3  双腔谐振反射器对两种入射模式的反射电场示意图

    Figure  3.  Schematic diagram of the reflected electric field of a dual-cavity resonant reflector for two incident modes

    图  4  谐振反射器的反射系数曲线

    Figure  4.  Reflection coefficient curve of resonant reflector

    图  5  模式转换器的电场示意图

    Figure  5.  Electric field diagram of mode converter

    图  6  X波段低磁场高效率RBWO模拟模型

    Figure  6.  X-band low magnetic field high efficiency RBWO simulation model

    图  7  部分二极管参数对输出效率的影响

    Figure  7.  Influence of some diode parameters on output efficiency

    图  8  输出功率与效率随引导磁场大小的变化

    Figure  8.  utput power and efficiencychange with the guiding magnetic field

    图  9  调制电流分布与电子相空间图

    Figure  9.  Modulated current distribution and electronic phase space diagram

    图  10  粒子模拟结果

    Figure  10.  PIC simulation results

  • [1] 王荟达. C波段低磁场高效率相对论返波管研究[D]. 北京: 清华大学, 2021

    Wang Huida. Research on a C-band high-efficiency relativistic backward-wave oscillator with low-magnetic-field operation[D]. Beijing: Tsinghua University, 2021
    [2] 王东阳, 滕雁, 史彦超, 等. Ka波段TM02模式低磁场相对论返波管初步实验研究[J]. 强激光与粒子束, 2018, 30:073003 doi: 10.11884/HPLPB201830.170436

    Wang Dongyang, Teng Yan, Shi Yanchao, et al. Preliminary experimental study on a Ka-band RBWO operating at TM02 mode with low guiding magnetic field[J]. High Power Laser and Particle Beams, 2018, 30: 073003 doi: 10.11884/HPLPB201830.170436
    [3] Fan Zhiqiang, Sun Jun, Cao Yibing, et al. An oversized Ku-band Cerenkov oscillator with pure TM01 mode output[J]. Physics of Plasmas, 2022, 29: 063103. doi: 10.1063/5.0093129
    [4] Wang Huida, Xiao Renzhen, Chen Changhua, et al. Experimental investigation of a super klystron-like relativistic backward wave oscillator operating with low magnetic field[J]. IEEE Transactions on Electron Devices, 2021, 68(6): 3045-3050. doi: 10.1109/TED.2021.3075419
    [5] 肖仁珍. 相对论返波管研究进展[J]. 现代应用物理, 2022, 13:020101

    Xiao Renzhen. Research progress of relativistic backward wave oscillator[J]. Modern Applied Physics, 2022, 13: 020101
    [6] 吴洋, 周自刚. S波段低磁场高效率相对论返波管振荡器研究[J]. 物理学报, 2019, 68:194101 doi: 10.7498/aps.68.20182155

    Wu Yang, Zhou Zigang. S-band high-efficiency relativistic backward wave oscillator with low magnetic field[J]. Acta Physica Sinica, 2019, 68: 194101 doi: 10.7498/aps.68.20182155
    [7] Ge Xingjun, Zhang Peng, Zhao Chenyu, et al. A high-efficiency L-band coaxial three-period relativistic Cherenkov oscillator[J]. Scientific Reports, 2019, 9: 12244. doi: 10.1038/s41598-019-47496-8
    [8] Sun Jun, Chen Changhua. Research on 3-GW repetitively operating relativistic backward wave oscillator[J]. IEEE Transactions on Plasma Science, 2020, 48(10): 3535-3543. doi: 10.1109/TPS.2020.3015666
    [9] 马乔生. 捷变频相对论返波管振荡器设计[J]. 强激光与粒子束, 2014, 26:123001 doi: 10.3788/HPLPB20142612.123001

    Ma Qiaosheng. Design of frequency-agile relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2014, 26: 123001 doi: 10.3788/HPLPB20142612.123001
    [10] 肖仁珍, 陈昌华, 史彦超, 等. 提高相对论返波管效率和功率容量的粒子模拟研究[J]. 真空电子技术, 2019(6):29-36

    Xiao Renzhen, Chen Changhua, Shi Yanchao, et al. Particle-in-cell simulation for increasing the efficiency and power capacity of relativistic backward wave oscillators[J]. Vacuum Electronics, 2019(6): 29-36
    [11] 史彦超, 滕雁, 陈昌华, 等. 一种X波段过模高效率相对论返波管[J]. 强激光与粒子束, 2018, 30:073002 doi: 10.11884/HPLPB201830.170491

    Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002 doi: 10.11884/HPLPB201830.170491
    [12] Tan Nongchao, Wu Ping, Sun Jun, et al. Experimental study on the influence of thermal accumulation on breakdown in slow-wave structures[J]. Physics of Plasmas, 2023, 30: 033106. doi: 10.1063/5.0132003
    [13] 马乔生, 张运俭, 李正红, 等. X波段永磁包装相对论返波管研制[J]. 强激光与粒子束, 2017, 29:023002 doi: 10.11884/HPLPB201729.160456

    Ma Qiaosheng, Zhang Yunjian, Li Zhenghong, et al. Development of X-band relativistic backward-wave oscillator with permanent magnet[J]. High Power Laser and Particle Beams, 2017, 29: 023002 doi: 10.11884/HPLPB201729.160456
    [14] Cao Yibing, Sun Jun, Fan Zhiqiang, et al. Over-sized mode-selective relativistic backward wave oscillator[J]. IEEE Electron Device Letters, 2019, 40(9): 1530-1533. doi: 10.1109/LED.2019.2931259
    [15] Zhang Peng, Ge Xingjun, Dang Fangchao, et al. A high-efficiency dual-band relativistic Cerenkov oscillator based on dual electron beams[J]. Physics of Plasmas, 2019, 26: 103501. doi: 10.1063/1.5115516
  • 加载中
图(10)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  41
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-17
  • 修回日期:  2024-03-04
  • 录用日期:  2024-03-05
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2024-03-15

目录

    /

    返回文章
    返回