留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重频超宽带电磁脉冲对GPS导航接收机的效应研究

胡明 陈圣贤 李永龙 袁雪林

胡明, 陈圣贤, 李永龙, 等. 重频超宽带电磁脉冲对GPS导航接收机的效应研究[J]. 强激光与粒子束, 2024, 36: 033011. doi: 10.11884/HPLPB202436.230324
引用本文: 胡明, 陈圣贤, 李永龙, 等. 重频超宽带电磁脉冲对GPS导航接收机的效应研究[J]. 强激光与粒子束, 2024, 36: 033011. doi: 10.11884/HPLPB202436.230324
Hu Ming, Chen Shengxian, Li Yonglong, et al. Influence of repeated frequency UWB electromagnetic pulse on GPS navigation receiver[J]. High Power Laser and Particle Beams, 2024, 36: 033011. doi: 10.11884/HPLPB202436.230324
Citation: Hu Ming, Chen Shengxian, Li Yonglong, et al. Influence of repeated frequency UWB electromagnetic pulse on GPS navigation receiver[J]. High Power Laser and Particle Beams, 2024, 36: 033011. doi: 10.11884/HPLPB202436.230324

重频超宽带电磁脉冲对GPS导航接收机的效应研究

doi: 10.11884/HPLPB202436.230324
基金项目: 中国电波传播研究所稳定支持项目(A132301215)
详细信息
    作者简介:

    胡 明,huming6@mail2.sysu.edu.cn

    通讯作者:

    袁雪林,yuanxlin3@mail.sysu.edu.cn

  • 中图分类号: TN972

Influence of repeated frequency UWB electromagnetic pulse on GPS navigation receiver

  • 摘要: 全球定位系统(GPS)在被广泛应用的同时,也容易受到外界的干扰,因此研究GPS导航接收机的可靠性具有重要意义。超宽带(UWB)电磁脉冲具有陡峭的上升沿和宽频谱,能够对GPS进行干扰,是一种新型导航干扰手段。通过分析重频超宽带电磁脉冲的能量谱线分布情况探究了其对GPS导航接收机的干扰机理,对重频UWB电磁脉冲对GPS接收机干扰效果与脉冲参数之间的关系进行了研究。结果表明:重频UWB电磁脉冲可以对导航接收机射频前端电路造成非线性干扰,降低接收机的捕获性能,提高脉冲场强或者重频可以增强干扰效果,甚至导致接收机失去捕获能力。
  • 图  1  高斯脉冲信号

    Figure  1.  Gaussian pulse signal

    图  2  不同重频下UWB信号能量谱密度

    Figure  2.  UWB signal energy spectral density under different repetition frequencies

    图  3  TEM喇叭天线

    Figure  3.  TEM horn antenna

    图  4  导航接收机射频前端结构

    Figure  4.  Navigation receiver RF front-end structure

    图  5  放大器工作区域图

    Figure  5.  Diagram of amplifier working area

    图  6  注入UWB脉冲后LNA的输出波形

    Figure  6.  Output waveform of the LNA after injecting UWB pulses

    图  7  实验环境

    Figure  7.  Experimental environment

    图  8  UWB电磁脉冲源(经60 dB衰减后)

    Figure  8.  UWB electromagnetic pulse source (after 60 dB attenuation)

    图  9  无干扰时接收机捕获卫星数量(绿色)

    Figure  9.  Number of satellites captured by the receiver without interference (green)

    图  10  不同电场强度下接收机捕获卫星数量

    Figure  10.  Number of satellites captured by receiver under different electric field intensity

    图  11  不同重频下接收机捕获卫星数量

    Figure  11.  Number of satellites captured by UWB EMP receivers at different repetition frequencies

  • [1] Schmidt E, Ruble Z, Akopian D, et al. Software-defined radio GNSS instrumentation for spoofing mitigation: a review and a case study[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2768-2784. doi: 10.1109/TIM.2018.2869261
    [2] 姜鹏, 边少锋, 占乃洲. 基于导航战的GPS压制式干扰技术研究[J]. 舰船电子工程, 2010, 30(8):66-68 doi: 10.3969/j.issn.1627-9730.2010.08.019

    Jiang Peng, Bian Shaofeng, Zhan Naizhou. Research of the GPS suppress jamming technology based on navigation warfare[J]. Ship Electronic Engineering, 2010, 30(8): 66-68 doi: 10.3969/j.issn.1627-9730.2010.08.019
    [3] 刘荣, 王立平, 陈杨. GPS接收机抗干扰性能仿真研究[J]. 无线电通信技术, 2014, 40(1):58-60,64 doi: 10.3969/j.issn.1003-3114.2014.01.017

    Liu Rong, Wang Liping, Chen Yang. Simulation research on anti-jamming performance of GPS receiver[J]. Radio Communications Technology, 2014, 40(1): 58-60,64 doi: 10.3969/j.issn.1003-3114.2014.01.017
    [4] 赵宇姣. 基于高重频超宽带脉冲的雷达干扰技术研究[D]. 成都: 电子科技大学, 2015

    Zhao Yujiao. Radar interference technology research based on the high repetition frequency ultra-wide-band pulse[D]. Chengdu: University of Electronic Science and Technology of China, 2015
    [5] 杨猛, 宁辉, 张永栋, 等. 重频超宽带脉冲干扰低噪声放大器[J]. 强激光与粒子束, 2015, 27:083004 doi: 10.11884/HPLPB201527.083004

    Yang Meng, Ning Hui, Zhang Yongdong, et al. Interference effects of repetitive ultra-wideband pulses on low noise amplifier[J]. High Power Laser and Particle Beams, 2015, 27: 083004 doi: 10.11884/HPLPB201527.083004
    [6] 陆希成, 邱扬, 武静, 等. 超宽带脉冲环境下射频滤波器非线性响应分析[J]. 强激光与粒子束, 2020, 32:033201 doi: 10.11884/HPLPB202032.190355

    Lu Xicheng, Qiu Yang, Wu Jing, et al. Analysis on nonlinear response of RF filter under ultra wide band pulse environment[J]. High Power Laser and Particle Beams, 2020, 32: 033201 doi: 10.11884/HPLPB202032.190355
    [7] 赵铜城, 余道杰, 周东方, 等. 无人机GPS接收机超宽谱电磁脉冲效应与试验分析[J]. 强激光与粒子束, 2019, 31:023001 doi: 10.11884/HPLPB201931.180365

    Zhao Tongcheng, Yu Daojie, Zhou Dongfang, et al. Ultra-wide spectrum electromagnetic pulse effect and experimental analysis of UAV GPS receiver[J]. High Power Laser and Particle Beams, 2019, 31: 023001 doi: 10.11884/HPLPB201931.180365
    [8] 张智香, 刘小龙, 陈锦, 等. 高重频超宽谱短电磁脉冲对GPS接收机干扰[J]. 强激光与粒子束, 2014, 26:033006 doi: 10.3788/HPLPB20142603.33006

    Zhang Zhixiang, Liu Xiaolong, Chen Jin, et al. Interference of ultra-wideband short electromagnetic pulses of high repetition frequency to GPS receiver[J]. High Power Laser and Particle Beams, 2014, 26: 033006 doi: 10.3788/HPLPB20142603.33006
    [9] 张坤, 曾芳玲, 欧阳晓凤, 等. 基于接收机捕获性能的GPS压制干扰效果分析[J]. 舰船电子对抗, 2018, 41(6):1-4,10

    Zhang Kun, Zeng Fangling, Ouyang Xiaofeng, et al. Analysis of GPS blanket jamming effect based on receiver capture performance[J]. Shipboard Electronic Countermeasure, 2018, 41(6): 1-4,10
    [10] 张坤, 曾芳玲, 欧阳晓凤, 等. 基于接收机通信和测距性能的GPS压制干扰效果分析[J]. 弹箭与制导学报, 2019, 39(1):147-150

    Zhang Kun, Zeng Fangling, Ouyang Xiaofeng, et al. Analysis of GPS blanket jamming effects based on receiver communication and ranging performance[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(1): 147-150
    [11] 张坤, 曾芳玲, 欧阳晓凤, 等. GPS接收机跟踪环压制干扰效果分析[J]. 现代防御技术, 2018, 46(6):109-114 doi: 10.3969/j.issn.1009-086x.2018.06.017

    Zhang Kun, Zeng Fangling, Ouyang Xiaofeng, et al. Analysis of GPS receiver tracking loop jamming effect[J]. Modern Defense Technology, 2018, 46(6): 109-114 doi: 10.3969/j.issn.1009-086x.2018.06.017
    [12] 朱四桃, 易超龙, 陈昌华, 等. TEM喇叭天线脉冲辐射特性[J]. 强激光与粒子束, 2013, 25(7):1755-1758 doi: 10.3788/HPLPB20132507.1755

    Zhu Sitao, Yi Chaolong, Chen Changhua, et al. Radiation characteristics of TEM horn antenna[J]. High Power Laser and Particle Beams, 2013, 25(7): 1755-1758 doi: 10.3788/HPLPB20132507.1755
    [13] Li Yonglong, Yu Bingrui, Chen Shengxian, et al. Failure mechanism of pHEMT in navigation LNA under UWB EMP[J]. Micromachines, 2022, 13(12): 2179. doi: 10.3390/mi13122179
    [14] Qin Yingshuo, Chai Changchun, Li Fuxing, et al. Study of self-heating and high-power microwave effects for enhancement-mode p-gate GaN HEMT[J]. Micromachines, 2022, 13: 106. doi: 10.3390/mi13010106
    [15] Lin Qian, Jia Lining, Wu Haifeng, et al. Investigation on temperature behavior for a GaAs E-pHEMT MMIC LNA[J]. Micromachines, 2022, 13: 1121. doi: 10.3390/mi13071121
    [16] 李永龙, 袁雪林, 刘九龙, 等. 基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术[J]. 强激光与粒子束, 2023, 35:033006 doi: 10.11884/HPLPB202335.220225

    Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006 doi: 10.11884/HPLPB202335.220225
    [17] 袁雪林, 徐哲锋, 张洪德, 等. UWB冲激雷达全固态高重频脉冲源设计[J]. 微波学报, 2008, 24(5):35-39

    Yuan Xuelin, Xu Zhefeng, Zhang Hongde, et al. Design of the full-solid high-repeatation pulser in UWB impulse radar[J]. Journal of Microwaves, 2008, 24(5): 35-39
  • 加载中
图(11)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  53
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2024-03-01
  • 录用日期:  2024-03-01
  • 网络出版日期:  2024-03-05
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回