留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半桥结构的双极性脉冲电源的研究

潘英进 熊奕鸣 李孜 姜松 饶俊峰

潘英进, 熊奕鸣, 李孜, 等. 基于半桥结构的双极性脉冲电源的研究[J]. 强激光与粒子束, 2024, 36: 025005. doi: 10.11884/HPLPB202436.230329
引用本文: 潘英进, 熊奕鸣, 李孜, 等. 基于半桥结构的双极性脉冲电源的研究[J]. 强激光与粒子束, 2024, 36: 025005. doi: 10.11884/HPLPB202436.230329
Pan Yingjin, Xiong Yiming, Li Zi, et al. Investigation of bipolar pulse source based on half-bridge structure[J]. High Power Laser and Particle Beams, 2024, 36: 025005. doi: 10.11884/HPLPB202436.230329
Citation: Pan Yingjin, Xiong Yiming, Li Zi, et al. Investigation of bipolar pulse source based on half-bridge structure[J]. High Power Laser and Particle Beams, 2024, 36: 025005. doi: 10.11884/HPLPB202436.230329

基于半桥结构的双极性脉冲电源的研究

doi: 10.11884/HPLPB202436.230329
基金项目: 国家自然科学基金项目(12205192)
详细信息
    作者简介:

    潘英进,panyingjin07@163.com

    通讯作者:

    饶俊峰,raojunfeng1985@163.com

  • 中图分类号: TM832

Investigation of bipolar pulse source based on half-bridge structure

  • 摘要: 为了满足脉冲电场消融的应用需求,解决单极性脉冲电场分布不均匀的问题,研制了一台基于半桥结构的主电路、具有纳秒级前沿的高重复频率双极性亚微秒高压脉冲电源。该脉冲电源由FPGA提供控制信号,经过驱动芯片放大控制信号后,利用光耦隔离驱动多个SiC MOSFET。驱动电路所需元器件较少,信号控制时序简单,可提供负压偏置,使开关管可靠关断,提高了电路的抗电磁干扰能力,使电源能稳定运行。通过电阻负载实验,对比分析了不同栅极电阻对驱动电压的影响,驱动电压上升沿时间越短对应的双极性高压脉冲前沿越快。实验结果表明:所设计的高频双极性脉冲电源在100 Ω纯阻性负载上能够稳定产生重复频率双极性纳秒脉冲,输出电压0~±4 kV可调,脉宽0.2~1.0 μs可调,正负脉冲相间延时0~1 ms可调,上升沿和下降沿60~150 ns之间。该双极性脉冲电源电路设计结构紧凑,能满足应用的参数需求。
  • 图  1  基于半桥结构的全固态双极性脉冲电源电路原理图

    Figure  1.  Schematic of all-solid-state bipolar pulse generator based on half-bridge structure

    图  2  驱动控制系统

    Figure  2.  Drive control system

    图  3  基本控制时序图

    Figure  3.  Basic time sequence of control signals

    图  4  均压电路原理图

    Figure  4.  Schematic of the voltage balancing circuit

    图  5  不同 Rg值时的驱动电压波形和负载输出电压波形

    Figure  5.  Driving voltage waveforms and load voltage waveforms with different gate resistors

    图  6  不同电压幅值的输出波形

    Figure  6.  Output waveforms with variable voltage

    图  7  不同脉宽的输出波形

    Figure  7.  Output waveforms with variable pulse width

    图  8  不同负载下的输出电压波形对比

    Figure  8.  Comparison of output voltage waveforms under different loads

    图  9  高频脉冲串输出

    Figure  9.  High frequency pulse string

    图  10  50 Ω 负载输出电压及电流波形

    Figure  10.  Voltage and current waveforms over 50 Ω load

  • [1] 康少芬, 张帅, 陈晓晓, 等. 纳秒脉冲介质阻挡放电等离子体氮还原合成氨的研究[J]. 高电压技术, 2021, 47(1):368-375 doi: 10.13336/j.1003-6520.hve.20200231

    Kang Shaofen, Zhang Shuai, Chen Xiaoxiao, et al. Study on reduction of nitrogen to ammonia by nanosecond pulse dielectric barrier discharge plasma[J]. High Voltage Engineering, 2021, 47(1): 368-375 doi: 10.13336/j.1003-6520.hve.20200231
    [2] 吴世林, 杨庆, 邵涛. 低温等离子体表面改性电极材料对液体电介质电荷注入的影响[J]. 电工技术学报, 2019, 34(16):3494-3503 doi: 10.19595/j.cnki.1000-6753.tces.181732

    Wu Shilin, Yang Qing, Shao Tao. Effect of surface-modified electrode by low temperature plasma on charge injection of liquid dielectric[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3494-3503 doi: 10.19595/j.cnki.1000-6753.tces.181732
    [3] Yu Weixin, Kong Fei, Dong Pan, et al. Depositing chromium oxide film on alumina ceramics enhances the surface flashover performance in vacuum via PECVD[J]. Surface and Coatings Technology, 2021, 405: 126509. doi: 10.1016/j.surfcoat.2020.126509
    [4] 于维鑫, 朱文超, 程晓, 等. 纳秒脉冲等离子体合成射流激励器的流场特性分析[J]. 气体物理, 2021, 6(2):38-45 doi: 10.19527/j.cnki.2096-1642.0821

    Yu Weixin, Zhu Wenchao, Cheng Xiao, et al. Analysis of flow field of nanosecond pulsed plasma synthetic jet[J]. Physics of Gases, 2021, 6(2): 38-45 doi: 10.19527/j.cnki.2096-1642.0821
    [5] 陈新华, 孙军辉, 殷胜勇, 等. 脉冲电场与生物医药技术的交叉及其对肿瘤治疗模式的改变[J]. 高电压技术, 2014, 40(12):3746-3754 doi: 10.13336/j.1003-6520.hve.2014.12.013

    Chen Xinhua, Sun Junhui, Yin Shengyong, et al. Interaction of pulsed electric field and biomedicine technology and the influence on solid tumor therapy[J]. High Voltage Engineering, 2014, 40(12): 3746-3754 doi: 10.13336/j.1003-6520.hve.2014.12.013
    [6] Rolong A, Rubinsky B, Davalos R V. Tissue ablation by irreversible electroporation//Miklavčič D. Handbook of electroporation[M]. Cham: Springer, 2017: 707-721.
    [7] Rao Junfeng, Zhu Yicheng, Wang Yonggang, et al. Study on the basic characteristics of solid-state linear transformer drivers[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3168-3175. doi: 10.1109/TPS.2020.3013292
    [8] 姚陈果, 宁郡怡, 刘红梅, 等. 微/纳秒脉冲电场靶向不同尺寸肿瘤细胞内外膜电穿孔效应研究[J]. 电工技术学报, 2020, 35(1):115-124 doi: 10.19595/j.cnki.1000-6753.tces.181719

    Yao Chenguo, Ning Junyi, Liu Hongmei, et al. Study of electroporation effect of different size tumor cells targeted by micro-nanosecond pulsed electric field[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 115-124 doi: 10.19595/j.cnki.1000-6753.tces.181719
    [9] 米彦, 姚陈果, 李成祥, 等. 基于场-路复合模型的细胞内外膜跨膜电位时频特性[J]. 电工技术学报, 2011, 26(2):14-20,33 doi: 10.19595/j.cnki.1000-6753.tces.2011.02.003

    Mi Yan, Yao Chenguo, Li Chengxiang, et al. Time-frequency characteristics of transmembrane potentials on cellular inner and outer membranes based on dielectric-circuit compound model[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 14-20,33 doi: 10.19595/j.cnki.1000-6753.tces.2011.02.003
    [10] Beebe S J, Fox P M, Rec L J, et al. Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells[J]. FASEB Journal, 2003, 17(9): 1493-1495.
    [11] Beebe S J, Fox P M, Rec L J, et al. Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 286-292. doi: 10.1109/TPS.2002.1003872
    [12] Kong M G, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11: 115012. doi: 10.1088/1367-2630/11/11/115012
    [13] Schoenbach K H, Beebe S J, Buescher E S. Intracellular effect of ultrashort electrical pulses[J]. Bioelectromagnetics, 2001, 22(6): 440-448. doi: 10.1002/bem.71
    [14] Tang Jingchao, Yin Hairong, Ma Jialu, et al. Electroporation of KcsA membrane protein system under nanosecond pulsed electric field: a molecular dynamics simulation[J]. Vacuum Electronics, 2019(1): 14-20.
    [15] Canacsinh H, Redondo L M, Silva J F. Marx-type solid-state bipolar modulator topologies: performance comparison[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2603-2610. doi: 10.1109/TPS.2012.2190944
    [16] 葛劲伟, 姜松, 饶俊峰, 等. 全固态高压双极性方波脉冲叠加器的研制[J]. 高电压技术, 2019, 45(4):1305-1312 doi: 10.13336/j.1003-6520.hve.20190329028

    Ge Jinwei, Jiang Song, Rao Junfeng, et al. Development of all-solid-state bipolar pulse adder with high voltage rectangular wave pulses output[J]. High Voltage Engineering, 2019, 45(4): 1305-1312 doi: 10.13336/j.1003-6520.hve.20190329028
    [17] 石小燕, 任先文, 刘平, 等. 基于MOSFET的高重复频率高压脉冲源设计[J]. 强激光与粒子束, 2019, 31:040022 doi: 10.11884/HPLPB201931.180321

    Shi Xiaoyan, Ren Xianwen, Liu Ping, et al. Design of high repetition rate and high voltage pulse generator based on metal oxide semiconductor field-effect transistor[J]. High Power Laser and Particle Beams, 2019, 31: 040022 doi: 10.11884/HPLPB201931.180321
    [18] Rocha L L, Silva J F, Redondo L M. Seven-level unipolar/bipolar pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2060-2064. doi: 10.1109/TPS.2016.2519269
    [19] Chen J F, Lin J N, Ai T H. The techniques of the serial and paralleled IGBTs[C]//Proceedings of the 22nd International Conference on Industrial Electronics, Control, and Instrumentation. 1996: 999-1004.
    [20] Chen Xiaotian, Yu Lin, Jiang Tingting, et al. A high-voltage solid-state switch based on series connection of IGBTs for PEF applications[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2328-2334. doi: 10.1109/TPS.2017.2713781
    [21] Kopacz R, Peftitsis D, Rabkowski J. Experimental study on fast-switching series-connected SiC MOSFETs[C]//2017 19th European Conference on Power Electronics and Applications. 2017: P. 1-P. 10.
    [22] 窦好刚, 廖源, 赵培聪. 高功率IGBT组件在雷达发射机中的应用[J]. 现代雷达, 2008, 30(2):85-87 doi: 10.3969/j.issn.1004-7859.2008.02.023

    Dou Haogang, Liao Yuan, Zhao Peicong. Application of high power IGBT modules in radar transmitter[J]. Modern Radar, 2008, 30(2): 85-87 doi: 10.3969/j.issn.1004-7859.2008.02.023
  • 加载中
图(10)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  98
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-22
  • 修回日期:  2023-11-29
  • 录用日期:  2023-11-29
  • 网络出版日期:  2023-12-02
  • 刊出日期:  2024-01-12

目录

    /

    返回文章
    返回