留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放电等离子体粒子云网格蒙特卡罗模拟的分层级验证方法

尚天博 杨薇 宋萌萌 周前红

尚天博, 杨薇, 宋萌萌, 等. 放电等离子体粒子云网格蒙特卡罗模拟的分层级验证方法[J]. 强激光与粒子束, 2024, 36: 033002. doi: 10.11884/HPLPB202436.230335
引用本文: 尚天博, 杨薇, 宋萌萌, 等. 放电等离子体粒子云网格蒙特卡罗模拟的分层级验证方法[J]. 强激光与粒子束, 2024, 36: 033002. doi: 10.11884/HPLPB202436.230335
Shang Tianbo, Yang Wei¹, Song Mengmeng, et al. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36: 033002. doi: 10.11884/HPLPB202436.230335
Citation: Shang Tianbo, Yang Wei¹, Song Mengmeng, et al. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36: 033002. doi: 10.11884/HPLPB202436.230335

放电等离子体粒子云网格蒙特卡罗模拟的分层级验证方法

doi: 10.11884/HPLPB202436.230335
基金项目: 国家自然科学基金项目(12375245、12005023);中国工程物理研究院院长基金项目(YZJJLX2022016)
详细信息
    作者简介:

    尚天博,shangtianbo1231@163.com

    通讯作者:

    杨 薇,yangwei861212@126.com

  • 中图分类号: O539

A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges

  • 摘要: 当前,科学计算的验证主要针对基于确定性偏微分方程组的网格离散方法。放电等离子体的粒子云网格PIC方法作为一种粒子-网格耦合的仿真手段,其验证方法具有显著不同的特点:第一,PIC仿真除了在时间和空间上进行离散,还需要对粒子数权重进行离散;第二,离散粒子的相空间分布函数是否适合作为验证研究的观测量;第三,粒子-网格耦合过程中的电场插值和电荷分配会影响PIC仿真的全局收敛精度。另外,当PIC方法与蒙特卡罗(MC)方法耦合时,离散误差和随机误差通常叠加在一起,理查德森外推需要结合系综平均进行。提出了一种分层级验证的方法。首先对单粒子轨道、电磁场求解、二体粒子碰撞进行收敛精度阶测试;然后采用空间电荷限制流、气体的傅里叶流动等具有精确解的经典物理模型分别对集成PIC、MC模块进行离散误差评估;最后采用放电物理过程对程序功能进行基准校验。
  • 图  1  自编程序的粒子推进Boris算法和odeint的计算结果比较

    Figure  1.  Comparison of calculation results for self-implemented particle push using Boris algorithm and odeint

    图  2  BKW气体的速度矩与时间的关系:数据点是使用蒙特卡罗碰撞方法计算的,而曲线是理论值

    Figure  2.  Velocity moments of BKW gas versus time: data points are calculated with Monte Carlo collision method and line is from theory

    图  3  空间和时间步长固定时,热通量随宏粒子权重的变化

    Figure  3.  Variation of heat flux with macro-particle weight when spatial and temporal steps are fixed

    图  4  空间步长和宏粒子权重固定时,热通量、离散误差、统计误差随无量纲时间步长的变化

    Figure  4.  Variation of heat flux, discretization error, and statistical error with dimensionless time step when spatial step and macro-particle weight are fixed

    图  5  离散网格一致细化时热通量随广义网格间距的变化

    Figure  5.  Variation of heat flux with generalized grid spacing during grid refinement with discrete grid uniformity

    图  6  PIC计算的SCLC密度与朱氏模型的比较

    Figure  6.  Comparison of SCLC density calculated by PIC and Zhu’s model

    图  7  简化反应通道模型气体击穿的粒子模拟基准校验:与商业软件对比宏粒子数随时间的变化

    Figure  7.  Benchmark validation of particle simulation for simplified reaction channel model of gas breakdown: comparison of macro-particle count vs time with commercial software

    表  1  粒子模拟验证的第二层级功能验证

    Table  1.   Second-level functional verification of particle simulation validation

    functiontypical caseparticle pushparticle collisionfield solversgather and scatterparticle boundaries
    DSMCFourier heat flow××OOreflective boundary
    MCCcharged particle transport××OOO
    PICspace charge limited current×O××absorptive boundary
    下载: 导出CSV

    表  2  带电粒子在等离子体中的输运

    Table  2.   Transport of charged particles in a plasma

    physical problem typical case collision type
    transport of electrons in weakly
    ionized plasmas
    Maxwell gas model electron-heavy particle elastic collisions
    model/hard sphere gas electron-heavy particle elastic + excitation
    Lucas-Salee model electron-heavy particle elastic + excitation + ionization
    Ness-Robson model electron-heavy particle elastic + excitation + ionization + attachment
    ion transport in weakly
    ionized plasma
    ion velocity distribution in an
    alternating electric field
    elastic collisions between ions and heavy particles
    transport in fully ionized plasma Spitzer conductivity Coulomb collisions between electrons and ions
    下载: 导出CSV
  • [1] Mehta U B. Credible computational fluid dynamics simulations[J]. AIAA Journal, 1998, 36(5): 665-667. doi: 10.2514/2.431
    [2] Oberkampf W L, Trucano T G. Verification and validation benchmarks[J]. Nuclear Engineering and Design, 2008, 238(3): 716-743. doi: 10.1016/j.nucengdes.2007.02.032
    [3] Turner M M. Verification of particle-in-cell simulations with Monte Carlo collisions[J]. Plasma Sources Science and Technology, 2016, 25: 054007. doi: 10.1088/0963-0252/25/5/054007
    [4] Riva F, Beadle C F, Ricci P. A methodology for the rigorous verification of Particle-in-Cell simulations[J]. Physics of Plasmas, 2017, 24: 055703. doi: 10.1063/1.4977917
    [5] Fierro A, Barnat E, Hopkins M, et al. Challenges and opportunities in verification and validation of low temperature plasma simulations and experiments[J]. The European Physical Journal D, 2021, 75: 151. doi: 10.1140/epjd/s10053-021-00088-6
    [6] Tranquilli P, Ricketson L, Chacón L. A deterministic verification strategy for electrostatic particle-in-cell algorithms in arbitrary spatial dimensions using the method of manufactured solutions[J]. Journal of Computational Physics, 2022, 448: 110751. doi: 10.1016/j.jcp.2021.110751
    [7] DeChant C, Icenhour C, Keniley S, et al. Verification methods for drift-diffusion reaction models for plasma simulations[J]. Plasma Sources Science and Technology, 2023, 32: 044006. doi: 10.1088/1361-6595/acce65
    [8] O’Connor S, Crawford Z D, Verboncoeur J P, et al. A set of benchmark tests for validation of 3-D particle in cell methods[J]. IEEE Transactions on Plasma Science, 2021, 49(5): 1724-1731. doi: 10.1109/TPS.2021.3072353
    [9] Xiao Jianyuan, Qin Hong, Liu Jian, et al. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems[J]. Physics of Plasmas, 2015, 22: 112504. doi: 10.1063/1.4935904
    [10] Smith J R, Orban C, Rahman N, et al. A particle-in-cell code comparison for ion acceleration: EPOCH, LSP, and WarpX[J]. Physics of Plasmas, 2021, 28: 074505. doi: 10.1063/5.0053109
    [11] Bagheri B, Teunissen J, Ebert U, et al. Comparison of six simulation codes for positive streamers in air[J]. Plasma Sources Science and Technology, 2018, 27: 095002. doi: 10.1088/1361-6595/aad768
    [12] Bravenec R V, Chen Y, Candy J, et al. A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2[J]. Physics of Plasmas, 2013, 20: 104506. doi: 10.1063/1.4826511
    [13] Turner M M, Derzsi A, Donkó Z, et al. Simulation benchmarks for low-pressure plasmas: Capacitive discharges[J]. Physics of Plasmas, 2013, 20: 013507. doi: 10.1063/1.4775084
    [14] Charoy T, Boeuf J P, Bourdon A, et al. 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas[J]. Plasma Sources Science and Technology, 2019, 28: 105010. doi: 10.1088/1361-6595/ab46c5
    [15] Radtke G A, Martin N, Moore C H, et al. Robust verification of stochastic simulation codes[J]. Journal of Computational Physics, 2022, 451: 110855. doi: 10.1016/j.jcp.2021.110855
    [16] Taccogna F. Monte Carlo collision method for low temperature plasma simulation[J]. Journal of Plasma Physics, 2014, 81: 305810102.
    [17] Timko H, Crozier P S, Hopkins M M, et al. Why perform code-to-code comparisons: A vacuum arc discharge simulation case study[J]. Contributions to Plasma Physics, 2012, 52(4): 295-308. doi: 10.1002/ctpp.201100051
    [18] Carlsson J, Khrabrov A, Kaganovich I, et al. Validation and benchmarking of two particle-in-cell codes for a glow discharge[J]. Plasma Sources Science and Technology, 2016, 26: 014003. doi: 10.1088/0963-0252/26/1/014003
    [19] Gonzalez-Herrero D, Micera A, Boella E, et al. ECsim-CYL: Energy Conserving Semi-Implicit particle in cell simulation in axially symmetric cylindrical coordinates[J]. Computer Physics Communications, 2019, 236: 153-163. doi: 10.1016/j.cpc.2018.10.026
    [20] Krook M, Wu T T. Formation of Maxwellian tails[J]. Physical Review Letters, 1976, 36(19): 1107-1109. doi: 10.1103/PhysRevLett.36.1107
    [21] Bobylev A V. Proceedings of the USSR Academy of Sciences, 1975, 225: 1041.
    [22] Krook M, Wu T T. Exact solution of Boltzmann equations for multicomponent systems[J]. Physical Review Letters, 1977, 38(18): 991-993. doi: 10.1103/PhysRevLett.38.991
    [23] Myong R S, Karchani A, Ejtehadi O. A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification[J]. Physics of Fluids, 2019, 31: 066101. doi: 10.1063/1.5093746
    [24] Rader D J, Gallis M A, Torczynski J R, et al. Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow[J]. Physics of Fluids, 2006, 18: 077102. doi: 10.1063/1.2213640
    [25] Chapman S, Cowling T G. The mathematical theory of non-uniform gases[M]. Cambridge: Cambridge University Press, 1935.
    [26] Reid I D. An investigation of the accuracy of numerical solutions of Boltzmann’s equation for electron swarms in gases with large inelastic cross sections[J]. Australian Journal of Physics, 1979, 32(3): 231-254. doi: 10.1071/PH790231
    [27] Lucas J, Saelee H T. A comparison of a Monte Carlo simulation and the Boltzmann solution for electron swarm motion in gases[J]. Journal of Physics D:Applied Physics, 1975, 8(6): 640-650. doi: 10.1088/0022-3727/8/6/007
    [28] Ness K F, Robson R E. Velocity distribution function and transport coefficients of electron swarms in gases. II. Moment equations and applications[J]. Physical Review A, 1986, 34(3): 2185-2209. doi: 10.1103/PhysRevA.34.2185
    [29] Kumar K. Swarms in periodically time dependent electric fields[J]. Australian Journal of Physics, 1995, 48(3): 365-376. doi: 10.1071/PH950365
    [30] Spitzer L Jr, Härm R. Transport phenomena in a completely ionized gas[J]. Physical Review, 1953, 89(5): 977-981. doi: 10.1103/PhysRev.89.977
    [31] Kovalev V F, Bychenkov V Y. Analytic solutions to the vlasov equations for expanding plasmas[J]. Physical Review Letters, 2003, 90: 185004. doi: 10.1103/PhysRevLett.90.185004
    [32] Kilian P, Muñoz P A, Cedric Schreiner, et al. Plasma waves as a benchmark problem[J]. Journal of Plasma Physics, 2017, 83: 707830101. doi: 10.1017/S0022377817000149
    [33] Lau Y Y. Simple theory for the two-dimensional Child-Langmuir law[J]. Physical Review Letters, 2001, 87: 278301. doi: 10.1103/PhysRevLett.87.278301
    [34] Zhu Y S, Zhang P, Valfells A, et al. Novel scaling laws for the Langmuir-Blodgett solutions in cylindrical and spherical diodes[J]. Physical Review Letters, 2013, 110: 265007. doi: 10.1103/PhysRevLett.110.265007
    [35] Caflisch R E, Rosin M S. Beyond the Child-Langmuir limit[J]. Physical Review E, 2012, 85: 056408. doi: 10.1103/PhysRevE.85.056408
    [36] Rokhlenko A. Child-Langmuir flow with periodically varying anode voltage[J]. Physics of Plasmas, 2015, 22: 022126. doi: 10.1063/1.4913351
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  58
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-28
  • 修回日期:  2023-12-29
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-01-11
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回