留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段低相噪蓝宝石振荡器

刘盈 熊宜松 李月 李鑫 曾成 宁俊松 补世荣 王占平 张晓雨 刘绍阳 郭婉婷

刘盈, 熊宜松, 李月, 等. X波段低相噪蓝宝石振荡器[J]. 强激光与粒子束, 2024, 36: 033004. doi: 10.11884/HPLPB202436.230343
引用本文: 刘盈, 熊宜松, 李月, 等. X波段低相噪蓝宝石振荡器[J]. 强激光与粒子束, 2024, 36: 033004. doi: 10.11884/HPLPB202436.230343
Liu Ying, Xiong Yisong, Li Yue, et al. Design of X-band low phase noise sapphire oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 033004. doi: 10.11884/HPLPB202436.230343
Citation: Liu Ying, Xiong Yisong, Li Yue, et al. Design of X-band low phase noise sapphire oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 033004. doi: 10.11884/HPLPB202436.230343

X波段低相噪蓝宝石振荡器

doi: 10.11884/HPLPB202436.230343
基金项目: 国家自然科学基金项目(62371100)
详细信息
    作者简介:

    刘 盈,liuying20170512@163.com

    通讯作者:

    曾 成,zenghijk@uestc.edu.cn

  • 中图分类号: TN919.6

Design of X-band low phase noise sapphire oscillator

  • 摘要: 设计了一款低相噪蓝宝石振荡器并对其进行温度控制,基于蓝宝石谐振器理论,采用有限元仿真软件完成了蓝宝石谐振器设计。蓝宝石谐振器实测中心频率为9.84 GHz,有载Q值113 000。将该蓝宝石谐振器作为选频网络与放大器、滤波器、移相器和耦合器构成低相噪蓝宝石振荡器。振荡器的输出工作频率9.84 GHz,输出功率9 dBm,偏离载波1 kHz处相位噪声为−117 dBc/Hz,偏离载波10 kHz处相位噪声为−144 dBc/Hz,偏离载波100 kHz处相位噪声为−161 dBc/Hz。该振荡器有助于提高雷达对于低慢小目标的检测能力。
  • 图  1  蓝宝石谐振器S参数仿真结果

    Figure  1.  S-parameter simulation result of sapphire resonator

    图  2  蓝宝石谐振器实测结果

    Figure  2.  Measured results of sapphire resonator

    图  3  蓝宝石谐振器恒温装置

    Figure  3.  Sapphire resonator thermostat

    图  4  蓝宝石振荡器电路

    Figure  4.  Sapphire oscillator circuit

    图  5  移相器电路图

    Figure  5.  Circuit diagram of phase shifter

    图  6  滤波器电路图

    Figure  6.  Circuit diagram of the filter

    图  7  输出频率随时间变化

    Figure  7.  Frequency vs time

    图  8  不同QL的蓝宝石振荡器相位噪声

    Figure  8.  Sapphire oscillator phase noise for different QL

    图  9  振荡器相位噪声测试结果

    Figure  9.  Phase noise results of oscillators

    表  1  蓝宝石谐振器仿真结果

    Table  1.   Simulation results of the sapphire resonator

    eigenmode frequency/GHz Q value
    mode1 9.791 46 202 399
    mode2 9.862 38 202 418
    mode3 9.917 88 30 346
    mode4 9.918 09 30 378
    mode5 9.946 75 19 859
    mode6 9.946 80 19 860
    下载: 导出CSV
  • [1] 李赟玺. 面向“低慢小”目标探测与识别的激光雷达关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020

    Li Yunxi. Research on key technologies of Lidar oriented to the detection and recognition of the “low, slow and small” targets[D]. Harbin: Harbin Institute of Technology, 2020
    [2] 向志强, 刘波, 江少锋. “低慢小”目标的雷达与光电复合探测跟踪方法[J]. 计算机测量与控制, 2023, 31(5):34-40,47

    Xiang Zhiqiang, Liu Bo, Jiang Shaofeng. Radar and opto-electrical composite detection and tracking method for LSS-target[J]. Computer Measurement & Control, 2023, 31(5): 34-40,47
    [3] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5):803-827

    Chen Xiaolong, Chen Weishi, Rao Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803-827
    [4] 李沅鹏. X波段低相噪低杂散频率源研究与设计[D]. 南京: 南京信息工程大学, 2019

    Li Yuanpeng. Research and design of X band low phase noise and low spurious frequency source[D]. Nanjing: Nanjing University of Information Science & Technology, 2019
    [5] 董洪新, 邰战雄, 李强, 等. 基于晶振倍频鉴相的C波段低相噪频率源设计[J]. 太赫兹科学与电子信息学报, 2016, 14(4): 606-609

    Dong Hongxin, Tai Zhanxiong, Li Qiang, et al. Design of a C - band low phase noise frequency synthesizer based on phase detecting with crystal oscillator multiplication[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(4): 606-609
    [6] Kaesbach R, Van Delden M, Musch T. A fixed-frequency, tunable dielectric resonator oscillator with phase-locked loop stabilization[C]//2022 Asia-Pacific Microwave Conference (APMC). 2022: 728-730.
    [7] 朱英超. 基于微波介电陶瓷的X波段取样锁相介质振荡器[D]. 成都: 电子科技大学, 2016

    Zhu Yingchao. The X band sampling phase locked dielectric oscillator based on microwave dielectric ceramics[D]. Chengdu: University of Electronic Science and Technology of China, 2016
    [8] 杜倚诚. K波段介质振荡锁相源[D]. 成都: 电子科技大学, 2013

    Du Yicheng. K-band dielectric resonator oscillator phase-locked frequency source[D]. Chengdu: University of Electronic Science and Technology of China, 2013
    [9] 秦自恺. 压电石英晶体[M]. 北京: 国防工业出版社, 1980

    Qin Zikai. Piezoelectric quartz crystal[M]. Beijing: National Defense Industry Press, 1980
    [10] Braginsky V B, Mitrofanov V P, Panov V I, et al. Systems with small dissipation[J]. American Journal of Physics, 1987, 55(12): 1153-1154. doi: 10.1119/1.15272
    [11] Galani Z, Bianchini M J, Waterman R C, et al. Analysis and design of a single-resonator GaAs FET oscillator with noise degeneration[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32(12): 1556-1565. doi: 10.1109/TMTT.1984.1132894
    [12] Ivanov E N, Tobar M E, Woode R A. Advanced phase noise suppression technique for next generation of ultra low-noise microwave oscillators[C]//Proceedings of the 1995 IEEE International Frequency Control Symposium. 1995: 314-320.
    [13] Ivanov E N, Tobar M E. Low phase-noise microwave oscillators with interferometric signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(8): 3284-3294. doi: 10.1109/TMTT.2006.879172
    [14] 彭成文. 锁相介质振荡器[J]. 电子对抗技术, 2001, 16(4):43-47

    Peng Chengwen. Phase locked medium oscillator[J]. Electronic Warfare Technology, 2001, 16(4): 43-47
    [15] 杨非. 低相位噪声蓝宝石振荡器研究[D]. 南京: 东南大学, 2007

    Yang Fei. Research of low phase noise sapphire oscillator[D]. Nanjing: Southeast University, 2007
    [16] 严羽. X波段低相噪取样锁相介质振荡器[D]. 成都: 电子科技大学, 2009

    Yan Yu. X-band phase-locked dielectric resonator oscillator with low phase noise sampling[D]. Chengdu: University of Electronic Science and Technology of China, 2009
    [17] 冯琛皓. 超稳和超低相位噪声低温蓝宝石振荡器的研究[D]. 武汉: 华中科技大学, 2017

    Feng Chenhao. Research on ultra-stable and ultra-low phase noise cryogenic sapphire oscillator[D]. Wuhan: Huazhong University of Science and Technology, 2017
    [18] 张珂. 超低相噪振荡器设计及放大器相位噪声测量研究[D]. 南京: 东南大学, 2017

    Zhang Ke. A design of a ultra-low-phase-noise oscillator and a study on measurement of the phase noise of amplifier[D]. Nanjing: Southeast University, 2017
    [19] Hartnett J G, Tobar M E, Ivanov E N, et al. Optimum design of a high- Q room-temperature whispering-gallery-mode X-band sapphire resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(6): 1041-1047. doi: 10.1109/TUFFC.2013.2668
    [20] Creedon D L, Benmessai K, Tobar M E. Frequency conversion in a high Q-factor sapphire whispering gallery mode resonator due to paramagnetic nonlinearity[J]. Physical Review Letters, 2012, 109: 143902. doi: 10.1103/PhysRevLett.109.143902
    [21] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布[J]. 物理学报, 2022, 71:234101 doi: 10.7498/aps.71.20221156

    Fan Sichen, Yang Fan, Ruan Jun. Electromagnetic field distribution of whispering gallery mode in a sapphire resonator[J]. Acta Physica Sinica, 2022, 71: 234101 doi: 10.7498/aps.71.20221156
    [22] 何逸箫, 李闯, 李宏宇. 基于HFSS的蓝宝石谐振器仿真设计[J]. 宇航计测技术, 2021, 41(3):49-56

    He Yixiao, Li Chuang, Li Hongyu. Simulation design of sapphire resonator based on HFSS[J]. Journal of Astronautic Metrology and Measurement, 2021, 41(3): 49-56
    [23] Tobar M E, Ivanov E N, Locke C R, et al. Difference frequency technique to achieve frequency-temperature compensation in whispering-gallery sapphire resonator-oscillator[J]. Electronics Letters, 2002, 38(17): 948-950. doi: 10.1049/el:20020670
    [24] Tsarapkin D P, Shtin N A. Whispering gallery resonators with programmed temperature coefficient of frequency[C]//Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition. 2002: 565-571.
    [25] 邵慧敏. 超高Q值低温蓝宝石振荡器的初步搭建与评估[D]. 武汉: 华中科技大学, 2022

    Shao Huimin. Preliminary building and evaluation of cryogenic sapphire oscillator with ultrahigh Q-factor[D]. Wuhan: Huazhong University of Science and Technology, 2022
    [26] 朱鹏飞. Ku波段超低相噪振荡器研制[D]. 成都: 电子科技大学, 2019

    Zhu Pengfei. The development of Ku-band ultralow phase noise oscillator[D]. Chengdu: University of Electronic Science and Technology of China, 2019
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  43
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2023-12-28
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回