留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于嵌套结构的锁频锁相高功率微波振荡器仿真研究

李家文 葛行军 党方超 张鹏 邓如金 胡晓冬 李志敏

李家文, 葛行军, 党方超, 等. 一种基于嵌套结构的锁频锁相高功率微波振荡器仿真研究[J]. 强激光与粒子束, 2024, 36: 033005. doi: 10.11884/HPLPB202436.230344
引用本文: 李家文, 葛行军, 党方超, 等. 一种基于嵌套结构的锁频锁相高功率微波振荡器仿真研究[J]. 强激光与粒子束, 2024, 36: 033005. doi: 10.11884/HPLPB202436.230344
Li Jiawen, Ge Xingjun, Dang Fangchao, et al. Simulation of high power microwave oscillator with locked frequency and phase based on nested structure[J]. High Power Laser and Particle Beams, 2024, 36: 033005. doi: 10.11884/HPLPB202436.230344
Citation: Li Jiawen, Ge Xingjun, Dang Fangchao, et al. Simulation of high power microwave oscillator with locked frequency and phase based on nested structure[J]. High Power Laser and Particle Beams, 2024, 36: 033005. doi: 10.11884/HPLPB202436.230344

一种基于嵌套结构的锁频锁相高功率微波振荡器仿真研究

doi: 10.11884/HPLPB202436.230344
基金项目: 国家自然科学基金项目(11975309)
详细信息
    作者简介:

    李家文,15378116409@163.com

    通讯作者:

    葛行军,gexingjun230230@aliyun.com

  • 中图分类号: TN752.5

Simulation of high power microwave oscillator with locked frequency and phase based on nested structure

  • 摘要: 高功率微波(HPM)产生器件通过增加慢波结构的过模比使得功率容量显著提高。嵌套型结构让过模器件的空心结构或内导体结构得到使用,同时嵌套型器件的低阻抗使得其与低阻脉冲功率源能良好匹配。基于内外嵌套结构提出了一种锁频锁相高功率微波振荡器。相对于传统的锁频锁相方法,提出了基于耦合波导实现锁频锁相的新方法。内外相对论速调管振荡器(RKO)产生的微波信号通过耦合波导泄漏到高频结构中,对电子束进行预调制,从而实现锁频锁相。另外,为实现内外高功率微波通道合成,设计了双通道功率合成器。在振荡器的工作频点,功率合成器能弥补振荡器两输出通道相位差,使得功率合成效率提高,合成效率为98.3%。在二极管电压575 kV,磁场强度0.6 T条件下,内外RKO 的微波输出功率分别为2.2 GW和3.2 GW,频率差波动小于20 MHz,相位差稳定在10°附近;加载双通道功率合成器,仿真结果表明,微波输出功率为5.31 GW,功率效率32.2%。结果表明,嵌套器件在互锁状态时,振荡器饱和时间缩短,输出功率增大。
  • 图  1  内外RKO嵌套型器件结构示意图

    Figure  1.  Schematic of the new nested device based on two relativistic klystron oscillator (RKOs)

    1-dual annular cathode, 2-outer RKO, 3-inner RKO,4-coupling waveguide, 5-IREB

    图  2  归一化电场分布示意图和其对应的电子束负载电导

    Figure  2.  Normalized electric field distribution and electron conductivity

    图  3  调制腔的谐振特性曲线

    Figure  3.  Resonance characteristics of the modulation cavity

    图  4  内外RKO泄漏功率

    Figure  4.  Leakage power from outer and inner RKO

    图  5  外部RKO输出功率以及频谱

    Figure  5.  Output power of the outer RKO and the spectra of the generated microwave

    图  6  内部RKO输出功率以及频谱

    Figure  6.  Output power of the inner RKO and the spectrum of the generated microwave

    图  7  内外部RKO输出微波频率差随时间变化图像

    Figure  7.  Operation frequency for the two RKOs

    图  8  内外部RKO输出微波相位随时间变化图像

    Figure  8.  Operation phase for the two RKOs

    图  9  输出功率随参数影响的变化图像

    Figure  9.  Output power varies with the operating parameters

    图  10  功率合成器剖面示意图

    Figure  10.  Profile of the power combiner

    图  11  功率合成器的传输系数和相对相位

    Figure  11.  Transmission coefficient and relative phase of the power combiner

    图  12  系统整体结构示意图

    Figure  12.  Schematic of the whole system

    1-dual annular cathode, 2-outer RKO, 3-inner RKO, 4-coupling waveguide, 5-IREB, 6-power combiner

    图  13  系统最终输出功率以及频谱

    Figure  13.  Output power of the system and the spectra of the generated microwave

  • [1] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cherenkov generators[J]. IEEE Transactions on Plasma Science, 1990, 18(3): 525-536. doi: 10.1109/27.55924
    [2] Klimov A I, Kurkan I K, Polevin S D, et al. A multigigawatt X-band relativistic backward wave oscillator with a modulating resonant reflector[J]. Technical Physics Letters, 2008, 34(3): 235-237. doi: 10.1134/S1063785008030176
    [3] Zhang Jun, Zhong Huihuang, Luo Ling. A novel overmoded slow-wave high-power microwave (HPM) generator[J]. IEEE Transactions on Plasma Science, 2004, 32(6): 2236-2242. doi: 10.1109/TPS.2004.835970
    [4] Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Transactions on Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [5] 史彦超, 滕雁, 陈昌华, 等. 一种X波段过模高效率相对论返波管[J]. 强激光与粒子束, 2018, 30:073002 doi: 10.11884/HPLPB201830.170491

    Shi Yanchao, Teng Yan, Chen Changhua, et al. A high efficiency X-band over-mode relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2018, 30: 073002 doi: 10.11884/HPLPB201830.170491
    [6] Li Yangmei, Zhang Xiaoping, Qi Zumin, et al. A new coaxial high power microwave source based on dual beams[J]. Physics of Plasmas, 2014, 21: 053302. doi: 10.1063/1.4881465
    [7] 王挺, 张建德, 钱宝良. 具有双电子束结构的双波段相对论返波振荡器粒子模拟研究[J]. 强激光与粒子束, 2011, 23(9):2489-2494 doi: 10.3788/HPLPB20112309.2489

    Wang Ting, Zhang Jiande, Qian Baoliang. Investigation of dual-band relativistic backward wave oscillator with dual annular electron beams by particle-in-cell simulation[J]. High Power Laser and Particle Beams, 2011, 23(9): 2489-2494 doi: 10.3788/HPLPB20112309.2489
    [8] Zhang Peng, Ge Xingjun, Dang Fangchao, et al. A high-efficiency dual-band relativistic Cerenkov oscillator based on dual electron beams[J]. Physics of Plasmas, 2019, 26: 103501. doi: 10.1063/1.5115516
    [9] Ju Jinchuan, Fan Yuwei, Shu Ting, et al. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator[J]. Physics of Plasmas, 2014, 21: 103104. doi: 10.1063/1.4897937
    [10] Tang Yongfu, Meng Lin, Li Hailong, et al. Dual-band dual-beam relativistic backward wave oscillator with different inner and outer slow-wave structure periods[C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. 2011: 2423-2426.
    [11] Yan Xiaolu, Zhang Xiaoping, Li Yangmei, et al. A new compact self-coherent high power microwave source based on dual beams[J]. Physics of Plasmas, 2015, 22: 053301. doi: 10.1063/1.4919868
    [12] Xiao Renzhen, Deng Yuqun, Song Zhimin, et al. An all circular waveguide four-way power combiner with ultrahigh-power capacity and high combination efficiency[J]. IEEE Transactions on Plasma Science, 2018, 46(7): 2475-2479. doi: 10.1109/TPS.2018.2826779
    [13] Tu Siyu, Liu Jinsong, Wang Tianyi, et al. Design of a 94 GHz millimeter-wave four-way power combiner based on circular waveguide structure[J]. Electronics, 2021, 10: 1795. doi: 10.3390/electronics10151795
    [14] Elfrgani A, Seidfaraji H, Yurt S C, et al. Power combiner for high power Cerenkov devices[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2268-2271. doi: 10.1109/TPS.2016.2601015
    [15] 丁武. 通过锁相使一种过模复合器件运行频率稳定[J]. 强激光与粒子束, 2006, 18(12):2065-2069

    Ding Wu. Stabilization of operation frequency of an overmoded complex device by phase lock[J]. High Power Laser and Particle Beams, 2006, 18(12): 2065-2069
    [16] 宋玮, 邓昱群, 史彦超, 等. 高功率微波振荡器的相位控制[J]. 强激光与粒子束, 2014, 26:053001 doi: 10.11884/HPLPB201426.053001

    Song Wei, Deng Yuqun, Shi Yanchao, et al. Phase control of high power microwave oscillator[J]. High Power Laser and Particle Beams, 2014, 26: 053001 doi: 10.11884/HPLPB201426.053001
    [17] Levine J S, Benford J, Sze H, et al. Strongly coupled relativistic magnetrons for phase-locked arrays[C]//Proceedings of SPIE 1061, Microwave and Particle Beam Sources and Directed Energy Concepts. 1989: 144-156.
    [18] Branch G M. Electron beam coupling in interaction gaps of cylindrical symmetry[J]. IRE Transactions on Electron Device, 1961, 8(3): 193-207. doi: 10.1109/T-ED.1961.14787
    [19] 邓昱群, 史彦超, 宋玮, 等. 相对论返波管注入锁相的数值模拟[J]. 强激光与粒子束, 2014, 26:063037 doi: 10.11884/HPLPB201426.063037

    Deng Yuqun, Shi Yanchao, Song Wei, et al. Simulation of injection phase locking in relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2014, 26: 063037 doi: 10.11884/HPLPB201426.063037
    [20] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 刘国治, 周传明, 译. 北京: 清华大学出版社, 2005

    Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. Liu Guozhi, Zhou Chuanming, trans. Beijing: Tsinghua University Press, 2005
  • 加载中
图(13)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  57
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2023-12-30
  • 录用日期:  2023-12-30
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回